
138

Hereditary Cohesive Subgraphs Enumeration on Bipartite
Graphs: The Power of Pivot-based Approaches

QIANGQIANG DAI, RONG-HUA LI, XIAOWEI YE, and MEIHAO LIAO, Beijing Institute of
Technology, China

WEIPENG ZHANG, Tencent Technology (Shenzhen) Company Limited, China

GUOREN WANG, Beijing Institute of Technology, China

Finding cohesive subgraphs from a bipartite graph is a fundamental operator in bipartite graph analysis.

In this paper, we focus on the problem of mining cohesive subgraphs from a bipartite graph that satisfy a

hereditary property. Here a cohesive subgraph meets the hereditary property if all of its subgraphs satisfy the

same property as itself. We show that several important cohesive subgraph models, such as maximal biclique

and maximal 𝑘-biplex, satisfy the hereditary property. The problem of enumerating all maximal hereditary

subgraphs was known to be NP-hard. To solve this problem, we first propose a novel and general pivot-based

enumeration framework to efficiently enumerate all maximal hereditary subgraphs in a bipartite graph. Then,

based on our general framework, we develop a new pivot-based algorithm with several pruning techniques to

enumerate all maximal bicliques. We prove that the worst-case time complexity of our pivot-based maximal

biclique enumeration algorithm is 𝑂 (𝑚 × 2𝑛/2) (or 𝑂 (𝑚 × 1.414𝑛)) which is near optimal since there exist

up to 𝑂 (2𝑛/2) maximal bicliques in a bipartite graph with 𝑛 vertices and𝑚 edges. Moreover, we also show

that our algorithm can achieve polynomial-delay time complexity with a slight modification. Third, on the

basis of our general framework, we also devise a novel pivot-based algorithm with several non-trivial pruning

techniques to enumerate maximal 𝑘-biplexes in a bipartite graph. Finally, we conduct extensive experiments

using 11 real-world bipartite graphs to evaluate the proposed algorithms. The results show that our pivot-based

solutions can achieve one order of magnitude (three orders of magnitude) faster than the state-of-the-art

maximal biclique enumeration algorithms (maximal 𝑘-biplex enumeration algorithms).

CCS Concepts: • Theory of computation→ Backtracking.

Additional Key Words and Phrases: hereditary cohesive subgraph, biclique, 𝑘-biplex, enumeration framework

ACM Reference Format:
Qiangqiang Dai, Rong-Hua Li, Xiaowei Ye, Meihao Liao, Weipeng Zhang, and Guoren Wang. 2023. Hereditary

Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches. Proc. ACM
Manag. Data 1, 2, Article 138 (June 2023), 26 pages. https://doi.org/10.1145/3589283

1 INTRODUCTION
Bipartite graphs are ubiquitous in real-world applications. In a bipartite graph, the vertices can be

divided into two disjoint sets and each edge connects a vertex in one set to a vertex in the other set.

Some representative examples of real-world bipartite graphs include user-item networks [43, 44],

author-publication networks [22], and biological networks [23]. Real-world bipartite graphs often

Authors’ addresses: Qiangqiang Dai, qiangd66@gmail.com; Rong-Hua Li, lironghuabit@126.com; Xiaowei Ye, yexiaowei@

bit.edu.cn; Meihao Liao, mhliao@bit.edu.cn, Beijing Institute of Technology, Beijing, China; Weipeng Zhang, Tencent

Technology (Shenzhen) Company Limited, Shenzhen, China, jackwpzhang@tencent.com; Guoren Wang, Beijing Institute of

Technology, Beijing, China, wanggrbit@126.com.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

2836-6573/2023/6-ART138 $15.00

https://doi.org/10.1145/3589283

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

HTTPS://ORCID.ORG/0000-0002-8569-6558
HTTPS://ORCID.ORG/0000-0001-8658-6599
HTTPS://ORCID.ORG/0000-0003-0982-341X
HTTPS://ORCID.ORG/0000-0002-5808-3131
HTTPS://ORCID.ORG/0009-0001-1839-8788
HTTPS://ORCID.ORG/0000-0002-0181-8379
https://doi.org/10.1145/3589283
https://orcid.org/0000-0002-8569-6558
https://orcid.org/0000-0001-8658-6599
https://orcid.org/0000-0003-0982-341X
https://orcid.org/0000-0002-5808-3131
https://orcid.org/0009-0001-1839-8788
https://orcid.org/0000-0002-0181-8379
https://doi.org/10.1145/3589283

138:2 Qiangqiang Dai et al.

contain cohesive subgraph structures which correspond to communities or densely-connected

groups. Mining cohesive subgraphs from a bipartite graph is a fundamental operator in bipartite

graph analysis which has been widely used in many applications, such as community detection

[20, 22], online recommendation [17, 36], and biological network analysis [6, 42].

There exist many cohesive subgraph models in bipartite graphs. Notable examples include

maximal biclique [1, 9, 14, 24, 28, 50], maximal 𝑘-biplex [40, 48, 49], (𝛼, 𝛽)-core [7, 27], 𝑘-bitruss
[45, 52], and quasi biclique [19, 30, 46]. Among them, the maximal biclique model, perhaps, is the

most fundamental model, as all the other cohesive subgraph models can be considered as a relaxed
biclique model.

Instead of focusing on a particular cohesive subgraph model, in this paper, we study a family of

cohesive subgraph models in bipartite graphs that meet the hereditary property, namely hereditary

cohesive subgraphs. Here a subgraph𝐺 ′ is called a hereditary subgraph if (1)𝐺 ′ satisfies a property
P and (2) every induced subgraph of 𝐺 ′ also meets the property P. For convenience, we refer to
a subgraph that meets a hereditary property P as a P-subgraph. A P-subgraph𝐺 ′ is a maximal

P-subgraph if there is no other P-subgraph containing 𝐺 ′. Given a bipartite graph𝐺 , our goal is

to enumerate all maximal P-subgraphs from 𝐺 . To our knowledge, such a maximal P-subgraph
enumeration problem has not been investigated before. We show that both the maximal biclique and

maximal 𝑘-biplex are maximal P-subgraphs, thus both the classic maximal biclique enumeration

and maximal 𝑘-biplex enumeration problems are special instances of our problem.

Motivations. Practical solutions for maximal P-subgraph enumeration can be applied to many

applications, and two of them are summarized as follows.

Community detection in bipartite graphs. Detecting communities in a bipartite graph is an impor-

tant graph analysis task [6, 20, 23, 36, 42]. We can use the hereditary cohesive subgraph to model

communities in a bipartite graph. The communities detected by the hereditary cohesive subgraph

model often exhibit strong robustness, since the removal of any subset of vertices from the commu-

nity does not destroy the structural property. In effect, the classic maximal biclique and maximal

𝑘-biplex models have been widely used for community detection applications [20, 28, 40, 48] due to

such a nice hereditary property and cohesive property. Thus, the solution for maximal P-subgraph
enumeration can provide a general framework for community detection in bipartite graphs, which

captures a family of different community models.

Fraud detection in user-item networks. Consider an online user-item rating network (e.g., Amazon’s

user-product rating network), where the users can give ratings to the items. The item owners may

wish to improve their items’ ratings by hiring some fake users to frequently give high ratings to

their items. Clearly, the set of fake users and the set of their rated items often form a densely-

connected subgraph. Once again, we can use the hereditary cohesive subgraph model, such as

maximal biclique or maximal 𝑘-biplex to detect such fake users [48]. As a result, the approaches to

maximal P-subgraph enumeration can also be used for identifying possible rating frauds in online

user-item networks.

Although the significance of the maximal P-subgraph enumeration problem, a practical solution

for this problem is still lacking due to the intrinsic challenges of this problem. First, as indicated in

[21], the problem of enumerating all maximal P-subgraphs from a bipartite graph is NP-hard. Thus,

there does not exist a polynomial algorithm to solve this problem unless NP = P. Second, since the

hereditary property P is arbitrary (the enumeration algorithm for our problem should work for

any hereditary property P) and internal structure of the P is unclear, it is quite non-trivial to use

such a property P to design an enumeration algorithm. Moreover, existing solutions for maximal

biclique enumeration and maximal 𝑘-biplex enumeration also cannot be generalized to handle

our problem. This is because different properties P give rise to different enumeration problems,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:3

u1 u2 u4

v2 v3 v4 v5

u3

v1

Fig. 1. Running example: a bipartite graph 𝐺
and enumeration techniques for a specified P are unlikely to work for every hereditary subgraph

enumeration problem. For example, the techniques for maximal biclique enumeration are often hard

to extend to solve the problem of maximal 𝑘-biplex enumeration [48], because maximal bicliques

can be enumerated within the 2-hop neighborhood of each vertex, while maximal 𝑘-biplex does not

share such a nice property. As a result, new techniques need to be developed to solve our problem.

Contributions. In this paper, we formulate and develop efficient algorithms to enumerate maximal

hereditary subgraphs (maximalP-subgraphs) on bipartite graphs, with special focus on enumerating

maximal bicliques and maximal 𝑘-biplexes which are two representative maximal hereditary

subgraphs on bipartite graphs. In summary, the main contributions of this paper are as follows.

A novel and general pivot-based framework. To solve the maximal P-subgraph enumeration prob-

lem, we first devise a basic algorithm inspired by the classic set enumeration technique [5, 38].

Such a basic solution, however, may explore all possible subsets of vertices, thus resulting in many

unnecessary computations. To improve the efficiency, we develop a novel and general pivot-based

backtracking framework to enumerate all maximal P-subgraphs. Our framework is based on the

basic set enumeration technique together with a novel and carefully-designed pivoting strategy.

With such a powerful pivoting technique, our framework can significantly prune redundant com-

putations in the enumeration procedure. To our knowledge, the proposed framework is the first

practical solution for enumerating all maximal P-subgraphs in bipartite graphs. In addition, our

framework is very general which can provide useful guidelines to design practical solutions for

enumerating specified maximal P-subgraphs (e.g., maximal biclique and maximal 𝑘-biplex).

New maximal biclique enumeration algorithms.We propose a new maximal biclique enumeration

algorithm based on our general pivoting principle. The striking feature of our algorithm is that

its worst-case time complexity is near optimal. Specifically, we prove that the time complexity

of our pivot-based algorithm is 𝑂 (𝑚 × 2𝑛/2) (or 𝑂 (𝑚 × 1.414𝑛)) which is near optimal, because

there exist up to 𝑂 (2𝑛/2) maximal bicliques on a bipartite graph with 𝑛 vertices and𝑚 edges [37].

Moreover, with a slight modification, our pivot-based algorithm can achieve polynomial-delay time

complexity. In addition, we also present several non-trivial optimization techniques (including

early termination and ordering techniques) to further improve the efficiency of our algorithm.

Novel maximal 𝑘-biplex enumeration algorithms. Based on our general pivoting framework, we

also develop a novel pivot-based algorithm to enumerate all maximal 𝑘-biplexes. Note that the

detailed implementation of our pivoting technique for maximal𝑘-biplex enumeration is significantly

different from that for maximal biclique enumeration, although both of them are based on our

general pivoting principle. To our knowledge, this is the first pivot-based enumeration algorithm for

maximal 𝑘-biplex enumeration. In addition, we also develop several non-trivial pruning techniques

to further improve the efficiency of our algorithm when enumerating large maximal 𝑘-biplexes

(with size no less than a given threshold).

Extensive experiments. We conduct extensive experiments to evaluate the efficiency and effective-

ness of the proposed approaches using 11 real-world bipartite graphs. The results show that our

pivot-based algorithms are one order of magnitude faster than the state-of-the-art algorithm for max-

imal biclique enumeration, and three orders of magnitude faster than the state-of-the-art algorithms

for maximal 𝑘-biplex enumeration. In addition, two representative applications on fraud detection

and community detection demonstrate the high effectiveness of our solutions. For reproducibility

purposes, the source code of this work is available at https://github.com/qq-dai/BiHSE.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

https://github.com/qq-dai/BiHSE

138:4 Qiangqiang Dai et al.

2 PROBLEM STATEMENT
Let 𝐺 = (𝑈 ,𝑉 , 𝐸) be an undirected and unweighted bipartite graph with two disjoint vertex sets

𝑈 and 𝑉 and an edge set 𝐸 ⊆ 𝑈 ×𝑉 . Denote by 𝑛 = |𝑈 | + |𝑉 | and𝑚 = |𝐸 | the number of vertices

and edges in 𝐺 , respectively. For a vertex 𝑢 ∈ 𝑈 , we define 𝑁𝑢 (𝐺) as the set of neighbors of

𝑢 in 𝐺 , i.e., 𝑁𝑢 (𝐺) = {𝑤 ∈ 𝑉 | (𝑢,𝑤) ∈ 𝐸}. The degree of a vertex 𝑢 ∈ 𝑈 in 𝐺 is denoted by

𝑑𝑢 (𝐺) = |𝑁𝑢 (𝐺) |. Similar definitions are also applied for the vertices in 𝑉 . Given a pair (𝐴, 𝐵) of
vertex sets with 𝐴 ⊆ 𝑈 and 𝐵 ⊆ 𝑉 , we define 𝐺 (𝐴, 𝐵) = (𝐴, 𝐵, 𝐸′) as the induced subgraph of 𝐺 ,

where 𝐸′ = {(𝑢, 𝑣) ∈ 𝐸 |𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵}. Denote by P a graph property. Then, the hereditary property

for bipartite graphs is defined as follows.

Definition 1 (Hereditary property). Given a bipartite graph 𝐺 and a random subgraph 𝐻 of 𝐺 with
a graph property P, P is said to be hereditary if every subgraph of 𝐻 meets P.

Based on Definition 1, the maximal P-subgraph of a bipartite graph 𝐺 is defined as follows.

Definition 2 (Maximal P-subgraph). Given a bipartite graph 𝐺 and a fixed hereditary property P,
a subgraph 𝐻 of 𝐺 is called a maximal P-subgraph if 1) 𝐻 meets the property P, and 2) there is no
other subgraph 𝐻 ′ of 𝐺 containing 𝐻 and also meeting P.
Two notable instances of maximal P-subgraphs on bipartite graphs are maximal biclique [28]

and maximal 𝑘-biplex [34], which have been widely studied in the literature [1, 9, 13, 14, 24, 48, 50].

Below, we give the formal definitions of these two models.

Definition 3 (Maximal biclique). Given a bipartite graph 𝐺 = (𝑈 ,𝑉 , 𝐸), a subgraph 𝐻 = 𝐺 (𝐴, 𝐵)
induced by a pair of vertex sets (𝐴, 𝐵) is a maximal biclique of𝐺 if 1) ∀𝑢 ∈ 𝐴, 𝑣 ∈ 𝐵, there is an edge
(𝑢, 𝑣) ∈ 𝐸, and 2) there is no other subgraph 𝐻 ′ that contains 𝐻 and satisfies 1).

Definition 4 (𝑘-biplex). Given a bipartite graph𝐺 = (𝑈 ,𝑉 , 𝐸), a subgraph 𝐻 = 𝐺 (𝐴, 𝐵) induced by
a pair of sets (𝐴, 𝐵) in 𝐺 is a 𝑘-biplex, if in the subgraph 𝐻 , every vertex 𝑢 ∈ 𝐴 has a degree no less
than |𝐵 | − 𝑘 , and every vertex 𝑣 ∈ 𝐵 has a degree no less than |𝐴| − 𝑘 .
Definition 5 (Maximal 𝑘-biplex). A 𝑘-biplex 𝐺 (𝐴, 𝐵) of 𝐺 is called a maximal 𝑘-biplex if there is

no other 𝑘-biplex 𝐺 (𝐴′, 𝐵′) of 𝐺 that contains 𝐺 (𝐴, 𝐵).
The following lemma shows that both maximal biclique and maximal 𝑘-biplex are maximal

P-subgraphs. Due to space limitations, this paper omits the proofs that can be easily derived.

Lemma 1. Both biclique and 𝑘-biplex (for any integer 𝑘) meet the hereditary property.

Due to the nice hereditary property and the internal cohesiveness of these two hereditary

subgraph instances, both maximal biclique and maximal 𝑘-biplex are widely used in bipartite graph

analysis applications such as community detection [20, 28], fraud detection [48], and text mining

[32, 39]. Thus, it is important to develop efficient algorithms to solve the problem of enumerating

all maximal P-subgraphs on bipartite graphs.

Problem definition. Given a bipartite graph 𝐺 , our goal is to (1) develop a general framework to

efficiently enumerate all maximal P-subgraph of 𝐺 for any fixed hereditary property P, and (2)

apply the proposed framework to enumerate all maximal bicliques and maximal 𝑘-biplexes on 𝐺

respectively.

As shown by Yannakakis and Lewis [21], the problem of enumerating all maximal P-subgraphs
on 𝐺 is NP-hard for any given hereditary property P. To effectively address this problem, in this

work, we develop a novel and general pivot-based enumeration framework, which can significantly

prune enumeration space by a pivoting technique. In the following sections, we will first introduce

our pivot-based framework, followed by two new solutions for enumerating all maximal bicliques

and 𝑘-biplexes.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:5

Algorithm 1: A basic set enumeration framework

Input: The bipartite graph𝐺
Output: All maximal P-subgraphs of𝐺

1 𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅) ;
2 Function: 𝐸𝑛𝑢𝑚 (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
3 if 𝐶𝑈 ∪𝐶𝑉 = ∅ then
4 if 𝑋𝑈 ∪𝑋𝑉 = ∅ then Output (𝑅𝑈 , 𝑅𝑉) as a result;
5 return;

6 foreach 𝑤 ∈ 𝐶𝑈 do
7 𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 , 𝑤,𝐶𝑈 \ {𝑤},𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉) ;
8 𝐶𝑈 ← 𝐶𝑈 \ {𝑤}; 𝑋𝑈 ← 𝑋𝑈 ∪ {𝑤};
9 foreach 𝑤 ∈ 𝐶𝑉 do
10 𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑉 , 𝑅𝑈 , 𝑤,𝐶𝑉 \ {𝑤},𝐶𝑈 , 𝑋𝑉 , 𝑋𝑈) ;
11 𝐶𝑉 ← 𝐶𝑉 \ {𝑤}; 𝑋𝑉 ← 𝑋𝑉 ∪ {𝑤};

12 Function: 𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 , 𝑤,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
13 Generate sets𝐶′

𝑈
⊆ 𝐶𝑈 ,𝐶′

𝑉
⊆ 𝐶𝑉 , 𝑋 ′

𝑈
⊆ 𝑋𝑈 , and 𝑋 ′

𝑉
⊆ 𝑋𝑉 such that (𝑅𝑈 ∪ {𝑤,𝑢}, 𝑅𝑉) and (𝑅𝑈 ∪ {𝑤}, 𝑅𝑉 ∪ {𝑣})

are the partial results, where 𝑢 ∈ 𝐶′
𝑈
∪𝑋 ′

𝑈
and 𝑣 ∈ 𝐶′

𝑉
∪𝑋 ′

𝑉
;

14 𝐸𝑛𝑢𝑚 (𝑅𝑈 ∪ {𝑤}, 𝑅𝑉 ,𝐶′𝑈 ,𝐶 ′
𝑉
, 𝑋 ′

𝑈
, 𝑋 ′

𝑉
) ;

3 A GENERAL PIVOT-BASED FRAMEWORK
In this section, we first propose a basic set-enumeration technique to enumerate all maximal

P-subgraphs, based on which we then develop a general pivot-based enumeration framework.

3.1 The Basic Set Enumeration Framework
Our basic enumeration algorithm is inspired by the classic set enumeration technique [5, 38].

The key idea of our basic technique is that it makes use of a recursive approach to explore each

subgraph of a given bipartite graph 𝐺 , and then determines whether each explored subgraph is a

valid maximal P-subgraph. To achieve this, the algorithm needs to maintains three kinds of sets in

each recursive call, called the current partial result, candidate sets, and exclusion sets respectively to

direct the backtracking search. The detailed implementation is shown in Algorithm 1.

In Algorithm 1, it invokes the procedure 𝐸𝑛𝑢𝑚 to enumerate all maximal P-subgraphs (line 1),
which requires six parameters: 𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , and 𝑋𝑉 . Here the vertex sets (𝑅𝑈 , 𝑅𝑉) represent
the current partial result, (𝐶𝑈 ,𝐶𝑉) are the candidate sets in which each vertex can be used to expand
(𝑅𝑈 , 𝑅𝑉), and (𝑋𝑈 , 𝑋𝑉) are the exclusion sets containing vertices in (𝐶𝑈 ,𝐶𝑉) that have already
been used to expand (𝑅𝑈 , 𝑅𝑉). Initially, both the sets (𝑅𝑈 , 𝑅𝑉) and (𝐶𝑈 ,𝐶𝑉) are set to empty, while

(𝐶𝑈 ,𝐶𝑉) is set to (𝑈 ,𝑉) (line 1). Then, in each recursion, every vertex in (𝐶𝑈 ,𝐶𝑉) is used to expand
the current partial result (𝑅𝑈 , 𝑅𝑉) (lines 6-11). When a vertex𝑤 in (𝐶𝑈 ,𝐶𝑉) is added into (𝑅𝑈 , 𝑅𝑉),
the algorithm needs to update the candidate and exclusion sets (line 13). The algorithm further

invokes a new sub-recursive call to enumerate the maximal results containing (𝑅𝑈 ∪ {𝑤}, 𝑅𝑉) (or
(𝑅𝑈 , 𝑅𝑉 ∪ {𝑤})) (line 14). After processing the vertex𝑤 ,𝑤 will be moved from 𝐶𝑈 (or 𝐶𝑉) to 𝑋𝑈

(or 𝑋𝑉) to avoid outputting non-maximal P-subgraphs (line 8 and line 11). Specifically, if 𝑋𝑈 (or

𝑋𝑉) is not empty, there must exist previously-processed vertices that can be used to expand the

current (𝑅𝑈 , 𝑅𝑉). This implies that (𝑅𝑈 , 𝑅𝑉) cannot be the maximal result even if there is no vertex

in (𝐶𝑈 ,𝐶𝑉). Thus, whenever both (𝐶𝑈 ,𝐶𝑉) and (𝑋𝑈 , 𝑋𝑉) are empty, the algorithm outputs the

current (𝑅𝑈 , 𝑅𝑉) as a maximal P-subgraph (lines 3-4).

It is easy to show that the worst-case time complexity of Algorithm 1 is 𝑂 (𝑓 (𝑛) × 2
𝑛) (𝑓 (𝑛)

denotes the time consumed to generate the candidate sets and exclusion sets), because the algorithm

may traverse all possible subsets of the vertex set. For example, if 𝐺 itself is a P-subgraph, every
possible subgraph of𝐺 will be explored by the algorithm. To improve Algorithm 1, we next propose

a pivot-based enumeration framework that can prune many redundant computations.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:6 Qiangqiang Dai et al.

3.2 Novel Pivot-based Enumeration Framework
The key to speeding up Algorithm 1 is to devise a pruning technique to reduce the unnecessary

computations that produce non-maximal P-subgraphs. However, it is quite non-trivial to achieve

this, because the graph property P is arbitrary and the internal structure of the P-subgraph is

unclear. Our solution to achieve this is based on an in-depth analysis of Algorithm 1.

An in-depth analysis. Given a bipartite graph 𝐺 and the candidate sets (𝐶𝑈 ,𝐶𝑉), suppose that
(𝐴, 𝐵) is a maximal P-subgraph of 𝐺 with (𝐴, 𝐵) ⊆ (𝐶𝑈 ,𝐶𝑉) (i.e, 𝐴 ⊆ 𝐶𝑈 and 𝐵 ⊆ 𝐶𝑉). In the top

recursion of Algorithm 1, each vertex in (𝐶𝑈 ,𝐶𝑉) is used to expand the initial result (∅, ∅). It is
easy to see that the result (𝐴, 𝐵) can be detected by a recursive call that enumerates all maximal

P-subgraphs containing 𝑢 ∈ 𝐶𝑈 if 𝑢 ∈ 𝐴. When finishing this computation, the vertex 𝑢 is removed

from 𝐶𝑈 and the vertices in (𝐶𝑈 \ {𝑢},𝐶𝑉) are further selected to continue the recursive calls. If

the next selected vertex 𝑣 ∈ 𝐶𝑉 satisfies 𝑣 ∈ 𝐵, then all non-maximal P-subgraphs contained in

(𝐴 \ {𝑢}, 𝐵) can also be enumerated, thus causing many redundant computations. To reduce this,

we can select another vertex 𝑣 ′ in𝐶𝑉 with 𝑣 ′ ∉ 𝐵 to enumerate all maximal P-subgraphs containing
𝑣 ′ in (𝐶𝑈 \ {𝑢},𝐶𝑉). Since 𝑣 ′ ∉ 𝐵, each P-subgraph (𝐴′, 𝐵′) with 𝑣 ′ ∈ 𝐵′ enumerated by such a

sub-recursive call must be excluded in (𝐴 \ {𝑢}, 𝐵). Thus, we can avoid enumerating non-maximal

P-subgraphs contained in (𝐴 \ {𝑣}, 𝐵). Moreover, when all vertices in (𝐶𝑈 \ (𝐴 \ {𝑢}),𝐶𝑉 \ 𝐵)
have been used to expand the initial result (∅, ∅), all the remaining vertices in the candidate sets

are exactly (𝐴 \ {𝑢}, 𝐵), which does not contain any maximal P-subgraph of 𝐺 since (𝐴, 𝐵) is a
maximal P-subgraph. As a consequence, we can terminate those sub-recursive calls. In other words,

all vertices in (𝐴 \ {𝑢}, 𝐵) are not necessary to expand the current partial result. Based on this

analysis, we present a general pivoting technique as described in the following theorem.

Theorem 3.1 (General Pivoting Rule). Consider a recursion with six parameters (𝑅𝑈 , 𝑅𝑉 , 𝐶𝑈 ,
𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉). Let 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 be a pivot vertex. Then, the vertices in (𝑃𝑈 ⊆ 𝐶𝑈 , 𝑃𝑉 ⊆ 𝐶𝑉) can be
skipped to expand (𝑅𝑈 , 𝑅𝑉) if and only if any result containing (𝑅𝑈 , 𝑅𝑉) but not 𝑢 is not contained in
𝐺 (𝑅𝑈 ∪ 𝑃𝑈 , 𝑅𝑉 ∪ 𝑃𝑉).

Note that a symmetrical pivot vertex 𝑣 in 𝐶𝑉 ∪ 𝑋𝑉 can also be selected by Theorem 3.1. For

simplicity, in the rest of this paper, we mainly discuss the pivot vertex which is selected from

𝐶𝑈 ∪𝑋𝑈 , because the other pivot in𝐶𝑉 ∪𝑋𝑉 can be obtained similarly. Then, based on the pivoting

rule shown in Theorem 3.1, we can derive the following result, which provides guidelines for

pivot-based branching.

Theorem 3.2. Given a pivot vertex 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 and the skipping sets (𝑃𝑈 ⊆ 𝐶𝑈 , 𝑃𝑉 ⊆ 𝐶𝑉), then
any maximal P-subgraph containing (𝑅𝑈 , 𝑅𝑉) must belong to one of the following three cases.
(1) It contains the vertex 𝑢.
(2) It does not contain 𝑢, but contains at least one vertex in 𝐶𝑉 \ 𝑃𝑉 .
(3) It does not contain vertices in {𝑢} ∪𝐶𝑉 \ 𝑃𝑉 , but contains at least one vertex in𝐶𝑈 \ (𝑃𝑈 ∪ {𝑢}).

Implementation details. Algorithm 2 details our pivot-based enumeration framework. Note that

Algorithm 2 is similar to Algorithm 1. The key difference is that Algorithm 2 uses the proposed piv-

oting technique (Theorem 3.1) to prune unnecessary sub-recursive calls. Specifically, the algorithm

first selects two pivot vertices 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 and 𝑣 ∈ 𝐶𝑉 ∪ 𝑋𝑉 , and constructs two pairs of skipping

sets (𝑃𝑈 , 𝑃𝑉) and (𝑃 ′𝑈 , 𝑃 ′𝑉) according to Theorem 3.1 (lines 6-7). When the size of 𝑃 ′
𝑈
∪ 𝑃 ′

𝑉
is larger

than that of 𝑃𝑈 ∪ 𝑃𝑉 , the algorithm utilizes the skipping sets (𝑃 ′
𝑈
, 𝑃 ′

𝑉
) to reduce enumeration

branches (line 8), because in this case more recursive calls can be reduced by the pivot vertex 𝑣 .

Then, the algorithm recursively expands the current result (𝑅𝑈 , 𝑅𝑉) with each vertex in (𝐶𝑈 ,𝐶𝑉),
but not in (𝑃𝑈 , 𝑃𝑉) (lines 9-14). The following theorem shows the correctness of Algorithm 2.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:7

Algorithm 2: The pivot-based enumeration framework

Input: The bipartite graph𝐺
Output: All maximal P-subgraphs of𝐺

1 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅) ;
2 Function: 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚 (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
3 if 𝐶𝑈 ∪𝐶𝑉 = ∅ then
4 if 𝑋𝑈 ∪𝑋𝑉 = ∅ then Output (𝑅𝑈 , 𝑅𝑉) as a result;
5 return;

6 Derive the skipping sets (𝑃𝑈 ⊆ 𝐶𝑈 , 𝑃𝑉 ⊆ 𝐶𝑉) by the pivot vertex 𝑢 (Theorem 3.1) that is selected from𝐶𝑈 ∪𝑋𝑈 ;

7 Derive the skipping sets (𝑃 ′
𝑈
⊆ 𝐶𝑈 , 𝑃 ′

𝑉
⊆ 𝐶𝑉) by the pivot vertex 𝑣 (Theorem 3.1) that is selected from𝐶𝑉 ∪𝑋𝑉 ;

8 if |𝑃 ′
𝑈
| + |𝑃 ′

𝑉
| > |𝑃𝑈 | + |𝑃𝑉 | then 𝑃𝑈 ← 𝑃 ′

𝑈
; 𝑃𝑉 ← 𝑃 ′

𝑉
;

9 foreach 𝑤 ∈ 𝐶𝑈 \ 𝑃𝑈 do
10 𝑃𝑖𝑣𝑜𝑡𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 , 𝑤,𝐶𝑈 \ {𝑤},𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉) ;
11 𝐶𝑈 ← 𝐶𝑈 \ {𝑤}; 𝑋𝑈 ← 𝑋𝑈 ∪ {𝑤};
12 foreach 𝑤 ∈ 𝐶𝑉 \ 𝑃𝑉 do
13 𝑃𝑖𝑣𝑜𝑡𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑉 , 𝑅𝑈 , 𝑤,𝐶𝑉 \ {𝑤},𝐶𝑈 , 𝑋𝑉 , 𝑋𝑈) ;
14 𝐶𝑉 ← 𝐶𝑉 \ {𝑤}; 𝑋𝑉 ← 𝑋𝑉 ∪ {𝑤};

15 Function: 𝑃𝑖𝑣𝑜𝑡𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 , 𝑤,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
16 Generate sets𝐶′

𝑈
⊆ 𝐶𝑈 ,𝐶′

𝑉
⊆ 𝐶𝑉 , 𝑋 ′

𝑈
⊆ 𝑋𝑈 , and 𝑋 ′

𝑉
⊆ 𝑋𝑉 such that (𝑅𝑈 ∪ {𝑤,𝑢}, 𝑅𝑉) and (𝑅𝑈 ∪ {𝑤}, 𝑅𝑉 ∪ {𝑣})

are the partial results, where 𝑢 ∈ 𝐶′
𝑈
∪𝑋 ′

𝑈
and 𝑣 ∈ 𝐶′

𝑉
∪𝑋 ′

𝑉
;

17 𝑃𝑖𝑣𝑜𝑡𝐸𝑛𝑢𝑚 (𝑅𝑈 ∪ {𝑤}, 𝑅𝑉 ,𝐶 ′𝑈 ,𝐶′
𝑉
, 𝑋 ′

𝑈
, 𝑋 ′

𝑉
) ;

Theorem 3.3. Algorithm 2 correctly computes all maximal P-subgraphs of a bipartite graph 𝐺 .

Clearly, the time complexity of Algorithm 2 can also be bounded by 𝑂 (𝑓 (𝑛)2𝑛). However,
compared to Algorithm 1, many unnecessary recursive calls can be pruned by Algorithm 2 with

the pivoting technique, which results in much better performance. Moreover, such a pivot-based

enumeration framework is very general which can guide us to design novel pivot-based algorithms

for enumerating anymaximal subgraph that satisfies the hereditary property. The following theorem

shows the space complexity of Algorithm 2.

Theorem 3.4. The space complexity of Algorithm 2 is 𝑂 (△𝑛 +𝑚), where △ is the maximum size of
the P-subgraph in 𝐺 .

Proof. It is easy to see that the algorithm uses 𝑂 (𝑛) space in each recursion, and the maximum

depth of the recursions is bounded by 𝑂 (△). Then, based on the depth-first backtrack search, we

can derive that the space complexity of Algorithm 2 is 𝑂 (△𝑛 +𝑚). □

In the following sections, we will show how to use our general framework to devise new and

efficient algorithms for enumerating maximal bicliques and maximal 𝑘-biplexes.

4 MAXIMAL BICLIQUE ENUMERATION
Recall that maximal biclique is a special instance of maximal P-subgraph. In this section, we aim

to develop new algorithms to enumerate all maximal bicliques based on the proposed pivoting

framework. Below, we first briefly review existing maximal biclique enumeration techniques, and

then present our solutions.

4.1 Overview of Existing Algorithms
The maximal biclique enumeration problem has been extensively studied in literature [1, 9, 13, 14,

24, 28, 50]. Note that all these existing solutions are fundamentally different from our proposed

pivot-based framework (Algorithm 2). Specifically, all existing solutions are based on the following

fact. Given a subset set 𝑆 ∈ 𝑈 , let 𝑁 (𝑆) be the common neighbors of 𝑆 in𝑉 , i.e., 𝑁 (𝑆) = ∩𝑢∈𝑆𝑁𝑢 (𝐺).
Then, if 𝑁 (𝑆) ≠ ∅, (𝑁 (𝑁 (𝑆)), 𝑁 (𝑆)) must be a maximal biclique. Therefore, all maximal bicliques

can be enumerated by exploring the combinations of vertices on the one side [24, 50]. However,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:8 Qiangqiang Dai et al.

unlike these algorithms, our pivot-based framework (Algorithm 2) considers both sides of vertices

to expand the partial biclique.

To the best of our knowledge, the state-of-the-art algorithm for maximal biclique enumeration

is developed in [9], which improves a so-called pivot-based approach presented in [1] with a

2-hop degree ordering optimization technique. Such a pivot-based approach is mainly based on a

neighborhood dominating technique. Specifically, for two vertices 𝑢 and 𝑢′ in 𝑈 , the vertex 𝑢′ is
dominated by 𝑢 if 𝑁𝑢′ (𝐺) ⊆ 𝑁𝑢 (𝐺). Then, if both 𝑢 and 𝑢′ are included in the candidate sets of a

recursive call, the vertex 𝑢′ is not necessary to be used to expand the current partial biclique. This

technique [9], however, needs to compute the neighborhood domination relationships between

every vertex and all its 2-hop neighbors which is often costly on large bipartite graphs. Moreover,

real-world bipartite graphs do not necessarily contain too many dominated vertices, thus the

pruning power of this technique may be poor on some real-world bipartite graphs (as indicated in

our experiments). To address this problem, we will propose a novel and more efficient pivoting

technique based on our general framework.

4.2 Pivot-based Maximal Biclique Enumeration
Following the general pivot-based framework (Algorithm 2), our pivot-based maximal biclique enu-

meration algorithm also admits six parameters (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉), 𝑋𝑈 , 𝑋𝑉), where (𝑅𝑈 , 𝑅𝑉), (𝐶𝑈 ,𝐶𝑉),
and (𝑋𝑈 , 𝑋𝑉) represents the current biclique, the candidate sets, and the exclusion sets respectively.

Note that to apply our general framework to maximal biclique enumeration, the key is to determine

the skipping sets 𝑃𝑈 and 𝑃𝑉 using the pivot vertex. Below, we first derive a lemma that can be used

to determine 𝑃𝑈 .

Lemma 2. If 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 is a pivot vertex, all vertices in 𝐶𝑈 \ {𝑢} can be omitted to expand the
current biclique (𝑅𝑈 , 𝑅𝑉).

According to Lemma 2, all vertices in𝐶𝑉 need to be used to expand the current biclique. However,

this can still generate many redundant computations. For instance, suppose that (𝐴, 𝐵) is a maximal

biclique of 𝐺 with 𝐴 = 𝑅𝑈 ∪ {𝑢} and 𝑅𝑉 ⊆ 𝐵 ⊆ (𝑅𝑉 ∪𝐶𝑉), where 𝑢 is a pivot vertex in 𝐶𝑈 . After

obtaining all maximal bicliques containing 𝑢, if we select any vertex 𝑣 ∈ 𝐵 \ 𝑅𝑉 to expand (𝑅𝑈 , 𝑅𝑉),
a non-maximal biclique (𝑅𝑈 , 𝐵) is generated by the algorithm, incurring redundant computations.

To overcome this issue, we also need to skip some vertices in𝐶𝑉 to enumerate all maximal bicliques

(i.e., 𝑃𝑉 is not empty), thus we present the following lemma.

Lemma 3. Given a pivot vertex 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 and the skipping sets (𝑃𝑈 ⊆ 𝐶𝑈 , 𝑃𝑉 ⊆ 𝐶𝑉), if any
biclique (𝐴, 𝐵) with 𝑅𝑈 ⊂ 𝐴 and 𝑅𝑉 ⊆ 𝐵 ⊆ (𝑅𝑉 ∪ 𝑃𝑉) can be enlarged by 𝑢, then there is no maximal
biclique in𝐺 that excludes all vertices in {𝑢}∪𝐶𝑉 \𝑃𝑉 but includes at least one vertex in 𝑃𝑈 = 𝐶𝑈 \{𝑢}
(i.e., no maximal biclique in 𝐺 belongs to the case (3) in Theorem 3.2).

Armed with Lemma 3, we can always set the skipping set 𝑃𝑈 as𝐶𝑈 \ {𝑢} if𝑢 is the pivot vertex in

𝐶𝑈 ∪𝑋𝑈 . Then, the remaining issue is to determine the skipping set 𝑃𝑉 , satisfying that each biclique

(𝐴, 𝐵) with 𝑅𝑉 ⊆ 𝐵 ⊆ (𝑅𝑉 ∪ 𝑃𝑉) can be enlarged by 𝑢. Note that to achieve this, a prerequisite

is that 𝑃𝑉 must be included in the neighborhood of 𝑢. Otherwise, the biclique (𝐴, 𝐵) cannot be
extended by 𝑢, since there is a vertex 𝑣 ∈ 𝐵 with 𝑣 ∉ 𝑁𝑢 (𝐺). Based on this, we can obtain the

following result.

Theorem 4.1 (Bicliqe Pivoting Rule). Let 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 be a pivot vertex. The vertices in
(𝑃𝑈 , 𝑃𝑉) can be skipped to expand (𝑅𝑈 , 𝑅𝑉), where 𝑃𝑈 = 𝐶𝑈 \ {𝑢} and 𝑃𝑉 = 𝐶𝑉 ∩ 𝑁𝑢 (𝐺).

Based on Algorithm 2 and the pivoting rule established in Theorem 4.1, It is easy to devise a pivot-

based algorithm for maximal biclique enumeration as outlined in Algorithm 3. Note that to achieve

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:9

Algorithm 3: Pivot-based maximal biclique enumeration

Input: The bipartite graph𝐺
Output: All maximal bicliques of𝐺

1 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅) ;
2 Function: 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
3 if 𝐶𝑈 ∪𝐶𝑉 = ∅ then
4 if 𝑋𝑉 = ∅ and 𝑋𝑈 = ∅ then Output (𝑅𝑈 , 𝑅𝑉) as a result ;
5 return;

6 Select a pivot vertex 𝑢 from𝐶𝑈 ∪𝑋𝑈 that maximizes |𝑃𝑈 | + |𝑃𝑉 | , where 𝑃𝑈 = 𝐶𝑈 \ {𝑢} and 𝑃𝑉 = 𝐶𝑉 ∩ 𝑁𝑢 (𝐺) ;
7 Select a pivot vertex 𝑣 from𝐶𝑉 ∪𝑋𝑉 that maximizes |𝑃 ′

𝑈
| + |𝑃 ′

𝑉
| , where 𝑃 ′

𝑈
= 𝐶𝑈 ∩ 𝑁𝑣 (𝐺) and 𝑃 ′𝑉 = 𝐶𝑉 \ {𝑣};

8 if |𝑃 ′
𝑈
| + |𝑃 ′

𝑉
| > |𝑃𝑈 | + |𝑃𝑉 | then 𝑃𝑈 ← 𝑃 ′

𝑈
; 𝑃𝑉 ← 𝑃 ′

𝑉
;

9 foreach 𝑢′ ∈ 𝐶𝑈 \ 𝑃𝑈 do
10 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 ,𝑢

′,𝐶𝑈 \ {𝑢′ },𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉) ;
11 𝐶𝑈 ← 𝐶𝑈 \ {𝑢′ }; 𝑋𝑈 ← 𝑋𝑈 ∪ {𝑢′ };
12 foreach 𝑣′ ∈ 𝐶𝑉 \ 𝑃𝑉 do
13 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑉 , 𝑅𝑈 , 𝑣′,𝐶𝑉 \ {𝑣′ },𝐶𝑈 , 𝑋𝑉 , 𝑋𝑈) ;
14 𝐶𝑉 ← 𝐶𝑉 \ {𝑣′ }; 𝑋𝑉 ← 𝑋𝑉 ∪ {𝑣′ };

15 Function: 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 ,𝑢,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
16 𝐶′

𝑉
← 𝐶𝑉 ∩ 𝑁𝑢 (𝐺) ; 𝑋 ′𝑉 ← 𝑋𝑉 ∩ 𝑁𝑢 (𝐺) ;

17 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉 ,𝐶𝑈 ,𝐶 ′
𝑉
, 𝑋𝑈 , 𝑋 ′

𝑉
) ;

�� }; � 1,2,3,4}; �: };

�: }; �: ,2,3,4,5}; �: }

}; ,2,3,4}; };

2}; ,3,4,5}; }

4}; ,2,3}; };

2}; 3,4,5}; }

}; ,2}; };

,2}; 3,4,5}; }

4,2}; ,3}; };

2}; 3}; }

4,2 }; 3}; };

2}; }; }

4,2}; }; };

2,3}; }; }

4,2 ,3}; }; };

2}; }; }

4}; 3}; };

2,4}; 3,5}; }

4}; }; };

2,5}; 3}; 4}

4}; }; };

2,4,3}; 5}; }

4,3}; }; };

2,4}; }; }

4}; }; };

2,5,3}; }; 4}

4, }; }; };

2,4,3,5}; }; }

}; 2}; };

,2,3}; 4,5}; }

}; 2}; };

,2}; }; }

,2}; }; };

,2}; }; }

}; }; };

,2,3,4}; 5}; }

2}; }; };

,2,3}; }; }

Fig. 2. The enumeration tree of the pivot-based maximal biclique enumeration algorithm (red vertices are the
pivot vertices, red branches are maximal bicliques, and blue vertices are the non-neighbors of pivot vertices).

good performance, Algorithm 3 always selects a pivot vertex 𝑢 (𝑣) from 𝐶𝑈 ∪ 𝑋𝑈 (𝐶𝑉 ∪ 𝑋𝑉) such

that |𝑃𝑈 | + |𝑃𝑉 | is maximum (lines 6-7). The following example illustrates the idea of Algorithm 3.

Example 1. Consider the bipartite graph 𝐺 shown in Fig. 1. Let 𝑅𝑈 , 𝑅𝑉 , 𝐶𝑈 , 𝐶𝑉 , 𝑋𝑈 , and 𝑋𝑉 be
the six parameters invoked by Algorithm 3. Initially, the sets 𝑅𝑈 , 𝑅𝑉 , 𝑋𝑈 , and 𝑋𝑉 are set to empty,
and the sets 𝐶𝑈 and 𝐶𝑉 are set to 𝑈 and 𝑉 , respectively. In the first recursion, the vertex 𝑣2 ∈ 𝐶𝑉 is
selected as the pivot vertex, and thus only vertex 𝑣2 is used to expand the current biclique (∅, ∅) based
on the pivoting rule (Theorem 4.1). Then, in the recursion with the current biclique (∅, {𝑣2}), a pivot
vertex 𝑢4 ∈ 𝐶𝑈 is further selected; and we can obtain that the vertices ({𝑢4}, {𝑣1}) are used to expand
(∅, {𝑣2}). If 𝑢4 is pushed into (∅, {𝑣2}), the similar pivoting rule will be used to enumerate all maximal
bicliques that contains ({𝑢4}, {𝑣2}). After that, the vertex 𝑣1 is pushed into (∅, {𝑣2}) to continue the
recursions. Finally, the algorithm terminates if no vertex is left to expand the current biclique in each
recursion. The complete enumeration tree of Algorithm 3 is shown in Fig. 2.

By Theorem 3.3 and Theorem 4.1, it is easy to show that Algorithm 3 correctly enumerates all

maximal bicliques. The following theorem shows the time complexity of Algorithm 3.

Theorem 4.2. The worst-case time complexity of Algorithm 3 is 𝑂 (𝑚 × 2𝑛/2) (or 𝑂 (𝑚 × 1.414𝑛)).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:10 Qiangqiang Dai et al.

Proof. Denote by𝑇 (𝑛) the maximum number of recursive calls of 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅),
where 𝑛 = |𝐶𝑈 | + |𝐶𝑉 |. Suppose that 𝑘 = min{𝑑𝑢 (𝐶𝑉), 𝑑𝑣 (𝐶𝑈)}, where 𝑢 ∈ 𝐶𝑈 ∪𝑋𝑈 (𝑣 ∈ 𝐶𝑉 ∪𝑋𝑉)

and 𝑑𝑢 (𝐶𝑉) = 𝐶𝑉 \ 𝑁𝑢 (𝐺) (𝑑𝑣 (𝐶𝑈) = 𝐶𝑈 \ 𝑁𝑣 (𝐺)). Next, we analyze recurrence relations of 𝑇 (𝑛).
Assume that the optimal pivot vertex 𝑢 is selected from 𝐶𝑈 ∪ 𝑋𝑈 . We then have 𝑘 = 𝑑𝑢 (𝐶𝑉) and

𝑑𝑣 (𝐶𝑈) ≥ 𝑘 for every 𝑣 ∈ 𝐶𝑉 \ 𝑁𝑢 (𝐺). Based on the pivoting technique (Theorem 4.1), only the

vertex 𝑢 and each vertex in 𝐶𝑉 \ 𝑁𝑢 (𝐺) is used to expand (𝑅𝑈 , 𝑅𝑉) in the recursions. When vertex

𝑢 is pushed into (𝑅𝑈 , 𝑅𝑉), we notice that the size of the corresponding candidate sets is at most

𝑛−𝑘 − 1, since 𝑢 has 𝑘 non-neighbors in𝐶𝑉 . Moreover, when pushing the 𝑖-th vertex in𝐶𝑉 \𝑁𝑢 (𝐺)
into (𝑅𝑈 , 𝑅𝑉), the size of its corresponding candidate sets is at most 𝑛 − 𝑘 − 𝑖 since 𝑑𝑣 (𝐶𝑈) ≥ 𝑘 for

every 𝑣 ∈ 𝐶𝑉 \ 𝑁𝑢 (𝐺). Thus, the following recurrence relations of 𝑇 (𝑛) can be obtained:

𝑇 (𝑛) ≤ 𝑇 (𝑛 − 𝑘 − 1) +
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑘 − 𝑖), if 𝑢 ∈ 𝐶𝑈 , (1)

𝑇 (𝑛) ≤
𝑘∑︁
𝑖=1

𝑇 (𝑛 − 𝑘 − 𝑖), if 𝑢 ∈ 𝑋𝑈 . (2)

Clearly, the worst-case bound of Eq. (2) is smaller than that of Eq. (1). Thus, in the following, we

mainly analyze the worst-case bound of Eq. (1) by considering four different cases.

Case 𝒌 = 0: In this case, 𝑇 (𝑛) = 𝑇 (𝑛 − 1). Obviously, the size of 𝑇 (𝑛) is a constant.
Case 𝒌 = 1: By Eq. (1), we have: 𝑇 (𝑛) ≤ 𝑇 (𝑛 − 1 − 1) +𝑇 (𝑛 − 1 − 1) = 2𝑇 (𝑛 − 2). It is also easy to

derive that 𝑇 (𝑛) is bounded by 𝑂 (2𝑛/2).
Case 𝒌 = 2: In this case, we have:𝑇 (𝑛) ≤ 𝑇 (𝑛−2−1)+∑2

𝑖=1𝑇 (𝑛−2−𝑖) = 𝑇 (𝑛−3)+𝑇 (𝑛−3)+𝑇 (𝑛−4).
As proved in [16], for a linear recursion function of 𝐹 (𝑛) = ∑𝑗

𝑖=1
𝐹 (𝑛−𝑎𝑖), 𝐹 (𝑛) is bounded by𝑂 (𝛼𝑛),

where 𝛼 is the maximum real root of the equation 𝑥𝑛 − ∑𝑗

𝑖=1
𝑥𝑛−𝑎𝑖 = 0. By setting 𝑎1 = 𝑎2 = 3

and 𝑎3 = 4, 𝑇 (𝑛) can be bounded by 𝑂 (𝛼𝑛). Here 𝛼 is the maximum real root of the equation

𝑥𝑛−4 (𝑥4 − 𝑥 − 𝑥 − 1) = 0 which can be easily shown that 𝛼 <
√
2. As a result, we have 𝑇 (𝑛) ≤ 2

𝑛/2
.

Case 𝒌 ≥ 3: In this case, we have:𝑇 (𝑛) ≤ 𝑇 (𝑛 − 𝑘 − 1) +∑𝑘
𝑖=1𝑇 (𝑛 − 𝑘 − 1) = (𝑘 + 1)𝑇 (𝑛 − 𝑘 − 1) =

(𝑘 + 1) 𝑛
𝑘+1𝑇 (𝑛 − (𝑘 + 1) × 𝑛

𝑘+1). To bound 𝑇 (𝑛), it is sufficient to derive a bound for (𝑘 + 1) 𝑛
𝑘+1 .

Note that 𝑓 (𝑥) = 𝑥
𝑛
𝑥 is a monotonically decreasing function with 𝑥 ≥ 4. Since 𝑘 + 1 ≥ 4, we have

(𝑘 + 1) 𝑛
𝑘+1 ≥ 4

𝑛
4 . As a result, we have 𝑇 (𝑛) = 𝑂 (4𝑛/4) = 𝑂 (2𝑛/2).

Putting it all together, the size of the enumeration tree of Algorithm 3 is bounded by 𝑂 (2𝑛/2) (or
𝑂 (1.414𝑛)). It is easy to show that Algorithm 3 takes at most𝑂 (𝑚) time in each recursion, thus the

total time complexity of Algorithm 3 is bounded by 𝑂 (𝑚 × 2𝑛/2). □

By Theorem 3.4, it is easy to verify that the space complexity of Algorithm 3 is bounded by

𝑂 (△𝑐𝑙𝑞𝑛 +𝑚), where △𝑐𝑙𝑞 is the maximum size of the biclique in𝐺 . Note that since there may exist

𝑂 (2𝑛/2) maximal bicliques in a bipartite graph as shown in [37], the worst-case time complexity of

any algorithm to enumerate all maximal bicliques must be no less than 𝑂 (𝜏 × 2𝑛/2) where 𝜏 is the

average size of all maximal bicliques. As a result, the worst-case time complexity of Algorithm 3 is

near optimal (only up to a factor𝑚/𝜏).
A polynomial-delay implementation.We find that Algorithm 3 can also achieve polynomial-

delay time complexity with a slight modification. The key idea is that: when a vertex𝑢 ∈ 𝐶𝑈 is added

into the current partial biclique (𝑅𝑈 , 𝑅𝑉), we then check if the conditions 𝑁 (𝑅𝑈 ∪ {𝑢}) = 𝑅𝑉 ∪𝐶′𝑉
and 𝑁 (𝑅𝑉 ∪𝐶′𝑉) = 𝑅𝑈 ∪ {𝑢} are satisfied; if so, the current biclique (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉 ∪𝐶′𝑉) is definitely
maximal and can be output as a result. To avoid redundant results, some additional modifications

are required: 1) remove lines 4-5 of Algorithm 3; 2) check 𝐶𝑉 ≠ ∅ before line 17; and 3) remove all

vertices in 𝐶′
𝑉
that have no neighbor in 𝐶𝑈 \ {𝑢}. The detailed procedure is shown in Algorithm 4.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:11

Algorithm 4: A polynomial-delay algorithm of pivot-based maximal biclique enumeration

Input: The bipartite graph𝐺
Output: All maximal bicliques of𝐺

1 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅) ;
2 Function: 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
3 if 𝐶𝑈 ∪𝐶𝑉 = ∅ then return ;

4 Lines 7-15 of Algorithm 3 ;

5 Function: 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 ,𝑢,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
6 if 𝐶𝑉 ≠ ∅ then
7 𝐶′

𝑉
← 𝐶𝑉 ∩ 𝑁𝑢 (𝐺) ; 𝑋 ′𝑉 ← 𝑋𝑉 ∩ 𝑁𝑢 (𝐺) ;

8 if 𝑁 (𝑅𝑈 ∪ {𝑢}) = 𝑅𝑉 ∪𝐶′𝑉 and 𝑁 (𝑅𝑉 ∪𝐶′𝑉) = 𝑅𝑈 ∪ {𝑢} then Output (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉 ∪𝐶′𝑉) as a result ;
9 𝐶′

𝑉
= {𝑤 ∈ 𝐶′

𝑉
|𝑁𝑤 (𝐺) ∩𝐶𝑈 \ {𝑢} ≠ ∅} ;

10 𝐵𝑖𝑐𝑙𝑖𝑞𝑢𝑒𝐸𝑛𝑢𝑚 (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉 ,𝐶𝑈 ,𝐶′
𝑉
, 𝑋𝑈 , 𝑋 ′

𝑉
) ;

Theorem 4.3. Algorithm 4 is a polynomial-delay algorithm with 𝑂 (𝑛𝑚△𝑐𝑙𝑞) delay.

Proof. First, we prove that the first maximal biclique can be output in polynomial time. Denote

by 𝑢 (in 𝐶𝑈) the vertex used to expand the initial biclique (∅, ∅). In the recursion with current

biclique ({𝑢}, ∅), we can see that (𝑁 (𝐶𝑉),𝐶𝑉) is a maximal biclique, where 𝐶𝑉 = 𝑁𝑢 (𝐺). Clearly,
any vertex 𝑢′ ∈ 𝑁 (𝐶𝑉) \ {𝑢} can be the pivot vertex, and only the pivot vertex is used to expand

({𝑢}, ∅), because 𝑁𝑢′ (𝐶𝑉) = ∅. When all vertices in 𝑁 (𝐶𝑉) have been expanded into ({𝑢}, ∅), the
first maximal biclique (𝑁 (𝐶𝑉),𝐶𝑉) is obtained, which consumes at most 𝑂 (𝑚△𝑐𝑙𝑞) time. Second,

we show that when a maximal biclique is output, the next maximal biclique can be determined

in polynomial time (𝑂 (𝑛𝑚△𝑐𝑙𝑞)). Given a recursion with the partial result (𝑅𝑈 , 𝑅𝑉) satisfying that

(𝑅𝑈 , 𝑅𝑉 ∪𝐶𝑉) is a maximal biclique, we can derive that the pivot vertex 𝑢 ∈ 𝐶𝑈 and vertices in

𝑁𝑢 (𝐶𝑉) are used to expand (𝑅𝑈 , 𝑅𝑉) by Theorem 4.1. When a pivot vertex 𝑢 is added to (𝑅𝑈 , 𝑅𝑉),
(𝑅𝑈 ∪ 𝑁 (𝑁𝑢 (𝐶𝑉)), 𝑅𝑉 ∪ 𝑁𝑢 (𝐶𝑉)) is clearly a maximal biclique. Based on the previous analysis,

such a maximal clique can be found in 𝑂 (𝑚△𝑐𝑙𝑞) time. Similarly, we note that another maximal

biclique (𝑅𝑈 ∪𝑁𝑣 (𝐶𝑈), 𝑅𝑉 ∪𝑁 (𝑁𝑣 (𝐶𝑈))) can be obtained if the first vertex 𝑣 ∈ 𝑁𝑢 (𝐶𝑉) is added to
(𝑅𝑈 , 𝑅𝑉). Since 𝑣 ∉ 𝑁𝑢 (𝐺) for any 𝑣 ∈ 𝑁𝑢 (𝐶𝑉), any maximal biclique generated by the recursion

with (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉) is different from that generated by the recursion with (𝑅𝑈 , 𝑅𝑉 ∪ {𝑣}). All that
remains is to show that the new maximal biclique can be found in polynomial time when using the

vertices in 𝑁𝑢 (𝐶𝑉) \ {𝑣} to expand (𝑅𝑈 , 𝑅𝑉). Denote by 𝑣 ′ ∈ 𝑁𝑢 (𝐶𝑉) \ {𝑣} the next vertex used

to expand (𝑅𝑈 , 𝑅𝑉). If 𝑁𝑣′ (𝐶𝑈) ⊆ 𝑁𝑣 (𝐶𝑈), the recursion with (𝑅𝑈 , 𝑅𝑉 ∪ {𝑣 ′}) can be terminated

because the vertex 𝑣 ∈ 𝑋𝑉 is the pivot vertex. Otherwise, (𝑅𝑈 ∪𝑁𝑣′ (𝐶𝑈), 𝑅𝑉 ∪𝑁 (𝑁𝑣′ (𝐶𝑈))) is output
as a maximal biclique. In the worst case, all vertices in 𝑁𝑢 (𝐶𝑉) \ {𝑣} may satisfy 𝑁𝑣′ (𝐶𝑈) ⊆ 𝑁𝑣 (𝐶𝑈).
Thus, the time to find a new maximal biclique is bounded by 𝑂 (𝑛𝑚△𝑐𝑙𝑞), since |𝑁𝑢 (𝐶𝑉) | < 𝑛 and

the maximum depth of any recursion is bounded by 𝑂 (△𝑐𝑙𝑞). This completes the proof. □

Discussions. Note that pivot-based algorithms are widely used in enumerating maximal cliques

in traditional graphs [15, 33, 41]. The key idea of these pivot-based algorithms is that they skip

all neighbor vertices of the pivot vertex to expand the current clique based on the fact that any

maximal clique either contains a vertex 𝑣 or a non-neighbor of 𝑣 . However, such a fact no longer

holds for maximal biclique enumeration. This is because in maximal biclique enumeration, there

exist two different candidate sets 𝐶𝑈 and 𝐶𝑉 . We need to consider skipping both the neighbor

vertices and non-neighbor vertices to expand the current biclique. Inspired by existing pivot-based

algorithms for maximal clique enumeration [41], we develop a new and general pivoting technique

for enumerating hereditary subgraphs in bipartite graphs, based onwhich a novel pivoting technique

for maximal biclique enumeration is proposed. Our pivot-based maximal biclique enumeration

technique can skip all vertices in𝐶𝑈 \ {𝑢} and 𝑁𝑢 (𝐶𝑉), where 𝑢 ∈ 𝐶𝑈 is a pivot vertex. In addition,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:12 Qiangqiang Dai et al.

the time complexity of our algorithm depends on𝑂 (2𝑛/2) which is also different from the traditional

pivot-based maximal clique enumeration algorithms that depend on 𝑂 (3𝑛/3).
4.3 Optimization Techniques
In this subsection, we propose several optimization techniques to further improve the efficiency.

The first one is an early termination technique to reduce the maximum depth of recursions and the

other one is an ordering technique to reduce the maximum size of the initial candidate sets.

Early termination. The early termination trick is based on the fact that if there is no edge in the

subgraph 𝐺 (𝐶𝑈 ,𝐶𝑉), then there are at most two possible maximal bicliques (𝑅𝑈 ∪ 𝐶𝑈 , 𝑅𝑉) and
(𝑅𝑈 , 𝑅𝑉 ∪𝐶𝑉) to be explored. This is because both (𝑅𝑉 ∪𝐶𝑉) ⊆ 𝑁 (𝑅𝑈) and (𝑅𝑈 ∪𝐶𝑈) ⊆ 𝑁 (𝑅𝑉)
always hold; and if a vertex on one side of the candidate sets is used to expand (𝑅𝑈 , 𝑅𝑉), then the

other side of the candidate sets will be empty.

We can slightly modify Algorithm 3 to implement such an early termination trick. Specifically,

let 𝑢 ∈ 𝐶𝑈 be the optimal pivot vertex selected by Algorithm 3 (lines 7-9). If 𝑃𝑉 = ∅ which means

that there is no edge in 𝐺 (𝐶𝑈 ,𝐶𝑉), the current recursive call can be terminated. In this case, we

only need to determine whether (𝑅𝑈 ∪ 𝐶𝑈 , 𝑅𝑉) is a maximal biclique by checking 𝑋𝑈 = ∅ and
𝑋𝑉 ∩ 𝑁 (𝐶𝑈) = ∅; and determine whether (𝑅𝑈 , 𝑅𝑉 ∪𝐶𝑉) is a maximal biclique by verifying 𝑋𝑉 = ∅
and 𝑋𝑈 ∩ 𝑁 (𝐶𝑉) = ∅.
Ordering optimization. As indicated in [1, 9], the performance of maximal biclique enumeration

algorithms is often sensitive to the vertex ordering. Inspired by this, we can also use the ordering

technique to further improve the performance of our algorithm.

Given an ordered vertex set O = {𝑢1, 𝑢2, ..., 𝑢𝑛} of all vertices in𝑈 ∪𝑉 , we define O≥𝑢𝑖 as the set
of vertices in O with ranks higher than 𝑢𝑖 ; and O<𝑢𝑖

is defined similarly. Let 𝑁 2

𝑢𝑖
(𝐺) be the set of

vertices in 𝐺 whose distance from 𝑢𝑖 ∈ O is 2, i.e., 𝑁 2

𝑢𝑖
(𝐺) = {𝑢 𝑗 ∈ O| 𝑗 ≠ 𝑖, 𝑁𝑢𝑖 (𝐺) ∩ 𝑁𝑢 𝑗

(𝐺) ≠ ∅}.
Note that in bipartite graphs, 𝑁 2

𝑢𝑖
(𝐺) does not contain any neighbor of 𝑢𝑖 . Given a vertex 𝑢𝑖 in O,

we denote by 𝐺+𝑢𝑖 the subgraph of 𝐺 induced by O≥𝑢𝑖 ∩ 𝑁 2

𝑢𝑖
(𝐺) and 𝑁𝑢𝑖 (𝐺). It is easy to show that

for any maximal biclique (𝐴, 𝐵) of 𝐺 , there must exist a subgraph 𝐺+𝑢𝑖 that contains all vertices
in (𝐴 \ {𝑢𝑖 }, 𝐵). Here the vertex 𝑢𝑖 can be only contained in O ∩𝑈 , as the diameter of (𝐴, 𝐵) is 2
and 𝐺+𝑢𝑖 contains all neighbor of 𝑢𝑖 and all vertices in 𝑁 2

𝑢𝑖
(𝐺) with ranks higher than 𝑢𝑖 . Thus, to

enumerate all maximal bicliques in 𝐺 , it is sufficient to enumerate all maximal bicliques in each

𝐺+𝑢𝑖 (𝑢𝑖 ∈ O ∩ 𝑈). In this work, we make use of two ordering techniques, including the classic

degeneracy ordering on graphs [15, 25] and the 2-hop degree ordering developed in [9]. Note that

to obtain the degeneracy ordering, we can treat the bipartite graph as a traditional graph, and then

iteratively remove the smallest-degree vertex from the bipartite graph to generate the degeneracy

ordering. Such an iteratively-peeling procedure can be implemented in 𝑂 (𝑚 + 𝑛) time [2, 15].

4.4 Enumerating Large Maximal Bicliques
In practical applications, we may be more interested in finding large maximal bicliques with size

no less than a given threshold, since small maximal bicliques typically have low practical value

[1, 28]. More specifically, we aim to identify every maximal biclique (𝐴, 𝐵) that satisfies |𝐴| ≥ 𝑞

and |𝐵 | ≥ 𝑞, where 𝑞 is a given threshold.

Note that our algorithm can be easily adapted to enumerate such size-constraint maximal

bicliques. Moreover, we can also use the size-constraint to further prune unnecessary computations.

Below, we first introduce the definition of (𝛼, 𝛽)-core, which was originally proposed in [7, 27].

Definition 6 ([7]). Given a bipartite graph𝐺 , an (𝛼, 𝛽)-core is amaximal subgraph𝐻 = (𝑈𝐻 ,𝑉𝐻 , 𝐸𝐻)
of 𝐺 such that each vertex 𝑢 in 𝑈𝐻 has a degree no less than 𝛼 in 𝐻 and each vertex 𝑣 in 𝑉𝐻 has a
degree no less than 𝛽 in 𝐻 .

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:13

By Definition 6, it is easy to show that every maximal biclique (𝐴, 𝐵) that satisfies |𝐴| ≥ 𝑞 and

|𝐵 | ≥ 𝑞 must be contained in the (𝑞, 𝑞)-core of 𝐺 . Thus, we can first compute the (𝑞, 𝑞)-core of
the bipartite graph, and then enumerate all size-constraint maximal bicliques in the (𝑞, 𝑞)-core,
instead of in the original bipartite graph. Such a (𝑞, 𝑞)-core can significantly prune a large number

of unpromising vertices. In addition, in our pivot-based algorithm, we need to compute the optimal

pivot vertex (line 7 of Algorithm 3) which means that the degree of every vertex in𝐶𝑈 ∪𝐶𝑉 must be

computed. Based on this degree information, we can prune the vertices in 𝐶𝑈 (𝐶𝑉) if their degrees

are less than 𝑞 − |𝑅𝑉 | (𝑞 − |𝑅𝑈 |) in 𝐺 (𝐶𝑈 ,𝐶𝑉) to further improve the efficiency of our algorithms.

5 MAXIMAL 𝑘-BIPLEX ENUMERATION
In this section, we focus on the problem of enumerating all maximal 𝑘-biplexes of a given bipartite

graph 𝐺 , where a maximal 𝑘-biplex is another instance of maximal P-subgraph. Such a maximal

𝑘-biplex enumeration problem has also been extensively studied in recent years [40, 48, 49]. To the

best of our knowledge, there are two state-of-the-art solutions for solving this problem. The first one

is developed in [49], which proposes a prefix tree based recursive algorithm to detect whether each

possible combination of vertices of𝐺 can form a maximal 𝑘-biplex. Such an enumeration method

may explore all the possible combinations of vertices, thus it cannot handle large bipartite graphs.

The second one is a polynomial-delay algorithm proposed in [48], which is based on the reverse

search framework [10]. Such an algorithm, however, needs to store all detected maximal 𝑘-biplexes

in the main memory to guide the reverse search procedure, which prohibits it to handle large

bipartite graphs. To overcome the limitations of existing solutions, we propose a novel algorithm

to enumerate all maximal 𝑘-biplexes based on our general pivot-based enumeration framework.

5.1 Pivot-based Maximal 𝑘-Biplex Enumeration
To use our general pivot-based enumeration framework for maximal 𝑘-biplex enumeration, the key

is to derive the skipping sets (𝑃𝑈 , 𝑃𝑉) based on the pivot vertex as stated in Theorem 3.1. Suppose

that the pivot vertex 𝑢 is selected from𝐶𝑈 ∪𝑋𝑈 . Given a vertex 𝑣 ∈ 𝑈 , we denote by 𝑁 𝑣 (𝐵) the set
of non-neighbors of 𝑣 in 𝐵 and define 𝑑𝑣 (𝐵) as |𝑁 𝑣 (𝐵) |. Below, we detail our solutions.
Constructing the skipping set 𝑃𝑉 . We find that the skipping set 𝑃𝑉 ⊆ 𝐶𝑉 can be easily derived,

as shown in Lemma 4.

Lemma 4. Let 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 be a pivot vertex in a recursion to enumerate all maximal 𝑘-biplexes
that contain (𝑅𝑈 , 𝑅𝑉). Then, the skipping set 𝑃𝑉 can be set as 𝐶𝑉 ∩ 𝑁𝑢 (𝐺).

Constructing the skipping set 𝑃𝑈 .We note that constructing the skipping set 𝑃𝑈 for maximal

𝑘-biplex enumeration is quite nontrivial. Similar ideas to construct 𝑃𝑈 for maximal biclique enu-

meration cannot be used for maximal 𝑘-biplex enumeration. Specifically, for maximal biclique

enumeration, only the pivot vertex 𝑢 (if 𝑢 ∈ 𝐶𝑈) and a subset of vertices on the opposite side (i.e.,

𝐶𝑉) are considered to be used to expand the partial biclique. Such a nice property, however, no

longer holds for maximal 𝑘-biplex enumeration. For instance, consider a bipartite graph𝐺 shown

in Fig. 1. Let (𝑅𝑈 , 𝑅𝑉) = ({𝑢1, 𝑢4}, {𝑣1}) and (𝐶𝑈 ,𝐶𝑉) = ({𝑢2, 𝑢3}, {𝑣2, 𝑣3, 𝑣4, 𝑣5}) be the current

𝑘-biplex and the candidate sets used to expand (𝑅𝑈 , 𝑅𝑉), respectively. Suppose that 𝑘 = 1 and

𝑣3 ∈ 𝐶𝑉 is selected as the pivot vertex. Then, it is easy to see that ({𝑢1, 𝑢4}, {𝑣1, 𝑣2, 𝑣5}) is a maximal

1-biplex of 𝐺 . Thus, when selecting a pivot vertex 𝑣 from 𝐶𝑉 ∪ 𝑋𝑉 , there still exist some maximal

𝑘-biplexes containing (𝑅𝑈 , 𝑅𝑉) in the subgraph of𝐺 induced by 𝑅𝑈 and 𝑅𝑉 ∪𝐶𝑉 \ {𝑣}. This example

suggests that 𝑃𝑈 cannot be simply set to 𝐶𝑈 \ {𝑢} if 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 is selected as the pivot.

For any maximal 𝑘-biplex (𝐴, 𝐵) containing (𝑅𝑈 , 𝑅𝑉) in the subgraph of 𝐺 that is induced by

𝑅𝑈 ∪ 𝐶𝑈 \ {𝑢} and 𝑅𝑉 , we notice that there exists an approach to determine whether it is also

a maximal 𝑘-biplex in 𝐺 . Specifically, if (𝐴, 𝐵) is also maximal in 𝐺 , there must exist a conflict

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:14 Qiangqiang Dai et al.

Algorithm 5: The pivot-based maximal 𝑘-biplex algorithm

Input: The bipartite graph𝐺 and a parameter 𝑘

Output: All maximal 𝑘-biplexes of𝐺

1 𝐵𝑖𝑝𝑙𝑒𝑥𝐸𝑛𝑢𝑚 (∅, ∅,𝑈 ,𝑉 , ∅, ∅) ;
2 Function: 𝐵𝑖𝑝𝑙𝑒𝑥𝐸𝑛𝑢𝑚 (𝑅𝑈 , 𝑅𝑉 ,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
3 if 𝐶𝑈 ∪𝐶𝑉 = ∅ then
4 if 𝑋𝑉 ∪𝑋𝑈 = ∅ then Output (𝑅𝑈 , 𝑅𝑉) as a result;
5 return;

6 Select a pivot 𝑢 ∈ 𝐶𝑈 ∪𝑋𝑈 and obtain the skipping sets (𝑃𝑈 = {𝑤 ∈ 𝐶𝑈 |𝑁𝑢 (𝑅𝑉) ⊆ 𝑁𝑤 (𝐺) }, 𝑃𝑉 = 𝐶𝑉 ∩ 𝑁𝑢 (𝐺)) ;
7 Select a pivot 𝑣 ∈ 𝐶𝑉 ∪𝑋𝑉 and obtain the skipping sets (𝑃 ′

𝑈
= 𝐶𝑈 ∩ 𝑁𝑣 (𝐺), 𝑃 ′𝑉 = {𝑤 ∈ 𝐶𝑉 |𝑁 𝑣 (𝑅𝑈) ⊆ 𝑁𝑤 (𝐺) }) ;

8 if |𝑃 ′
𝑈
| + |𝑃 ′

𝑉
| > |𝑃𝑈 | + |𝑃𝑉 | then 𝑃𝑈 ← 𝑃 ′

𝑈
; 𝑃𝑉 ← 𝑃 ′

𝑉
;

9 foreach 𝑤 ∈ 𝐶𝑈 \ 𝑃𝑈 do
10 𝐵𝑖𝑝𝑙𝑒𝑥𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 , 𝑤,𝐶𝑈 \ {𝑤},𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉) ;
11 𝐶𝑈 ← 𝐶𝑈 \ {𝑤}; 𝑋𝑈 ← 𝑋𝑈 ∪ {𝑤};
12 foreach 𝑤 ∈ 𝐶𝑉 \ 𝑃𝑉 do
13 𝐵𝑖𝑝𝑙𝑒𝑥𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑉 , 𝑅𝑈 , 𝑤,𝐶𝑉 \ {𝑤},𝐶𝑈 , 𝑋𝑉 , 𝑋𝑈) ;
14 𝐶𝑉 ← 𝐶𝑉 \ {𝑤}; 𝑋𝑉 ← 𝑋𝑉 ∪ {𝑤};

15 Function: 𝐵𝑖𝑝𝑙𝑒𝑥𝐵𝑟𝑎𝑛𝑐ℎ (𝑅𝑈 , 𝑅𝑉 ,𝑢,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉)
16 (𝐶′

𝑈
,𝐶 ′

𝑉
) ← 𝐵𝑖𝑃𝑙𝑒𝑥𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑅𝑈 , 𝑅𝑉 ,𝑢,𝐶𝑈 ,𝐶𝑉) ;

17 (𝑋 ′
𝑈
, 𝑋 ′

𝑉
) ← 𝐵𝑖𝑃𝑙𝑒𝑥𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑅𝑈 , 𝑅𝑉 ,𝑢,𝑋𝑈 , 𝑋𝑉) ;

18 𝐵𝑖𝑝𝑙𝑒𝑥𝐸𝑛𝑢𝑚 (𝑅𝑈 ∪ {𝑢}, 𝑅𝑉 ,𝐶′𝑈 ,𝐶′
𝑉
, 𝑋 ′

𝑈
, 𝑋 ′

𝑉
) ;

Algorithm 6: 𝐵𝑖𝑃𝑙𝑒𝑥𝑈𝑝𝑑𝑎𝑡𝑒𝑠 (𝑅𝑈 , 𝑅𝑉 , 𝑢,𝐶𝑈 ,𝐶𝑉)
1 𝐶′

𝑈
← 𝐶𝑈 \ {𝑢};𝐶′𝑉 ← 𝐶𝑉 ∩ 𝑁𝑢 (𝐺) ;

2 foreach 𝑣 ∈ 𝐶𝑉 \ 𝑁𝑢 (𝐺) do
3 if 𝑑𝑣 (𝑅𝑈 ∪ {𝑢}) ≤ 𝑘 ∧ 𝑑𝑢 (𝑅𝑉 ∪ {𝑣}) ≤ 𝑘 then𝐶′

𝑉
← 𝐶′

𝑉
∪ {𝑣};

4 foreach 𝑣 ∈ 𝑅𝑉 \ 𝑁𝑢 (𝐺) do
5 if 𝑑𝑣 (𝑅𝑈 ∪ {𝑢}) = 𝑘 then𝐶′

𝑈
← 𝐶′

𝑈
∩ 𝑁𝑣 (𝐺) ;

6 return (𝐶′
𝑈
,𝐶′

𝑉
) ;

vertex in 𝑁𝑢 (𝑅𝑉) that prohibits the pivot vertex 𝑢 to enlarge (𝐴, 𝐵). Based on this analysis, we can

derive the following lemma, which is used to compute maximal 𝑘-biplexes of 𝐺 in the subgraph

𝐺 (𝑅𝑈 ∪𝐶𝑈 \ {𝑢}, 𝑅𝑉 ∪ 𝑃𝑉).

Lemma 5. Given a pivot vertex 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 and a skipping set 𝑃𝑉 ⊆ 𝐶𝑉 , if a 𝑘-biplex (𝐴, 𝐵) that
contains (𝑅𝑈 , 𝑅𝑉) but not 𝑢 and 𝐶𝑉 \ 𝑃𝑉 is maximal in 𝐺 (the maximal 𝑘-biplex of 𝐺 belongs to the
case (iii) in Theorem 3.2), there must exist a vertex 𝑣 ′ ∈ 𝑅𝑉 \𝑁𝑢 (𝐺) with 𝑑𝑣′ (𝐴) = 𝑘 . Otherwise, (𝐴, 𝐵)
is definitely not maximal in 𝐺 .

By Lemma 5, the problem of generating the skipping set 𝑃𝑈 is equivalent to find a subset 𝑃𝑈 ⊆ 𝐶𝑈

such that for any 𝑘-biplex (𝐴, 𝐵) containing (𝑅𝑈 , 𝑅𝑉) in 𝐺 (𝑅𝑈 ∪ 𝑃𝑈 , 𝑅𝑉 ∪ 𝑃𝑉), 𝑑𝑣′ (𝐴) < 𝑘 holds

for each 𝑣 ′ ∈ 𝑅𝑉 \ 𝑁𝑢 (𝐺). Then, the following lemma shows how to derive the skipping set 𝑃𝑈 .

Lemma 6. Given a pivot vertex 𝑢 ∈ 𝐶𝑈 ∪ 𝑋𝑈 and the skipping set 𝑃𝑉 ⊆ 𝐶𝑉 in a recursion to
enumerate all maximal 𝑘-biplexes that contain (𝑅𝑈 , 𝑅𝑉), then the skipping set 𝑃𝑈 can be set as
{𝑤 ∈ 𝐶𝑈 |𝑁𝑢 (𝑅𝑉) ⊆ 𝑁𝑤 (𝐺)}.

Armed with Lemma 4 and Lemma 6, we can obtain the following pivoting rule for maximal

𝑘-biplex enumeration.

Theorem 5.1 (Biplex Pivoting Rule). Let𝑢 ∈ 𝐶𝑈 ∪𝑋𝑈 be a pivot vertex in a recursion. The vertices
in (𝑃𝑈 , 𝑃𝑉) can be skipped to expand (𝑅𝑈 , 𝑅𝑉), where 𝑃𝑈 = {𝑤 ∈ 𝐶𝑈 |𝑁𝑢 (𝑅𝑉) ⊆ 𝑁𝑤 (𝐺),𝑤 ≠ 𝑢} and
𝑃𝑉 = 𝐶𝑉 ∩ 𝑁𝑢 (𝐺).

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:15
�� }; � 1,2,3,4}; � : }; � : }; � : ,2,3,4,5}; � : }

}; ,2,3,4 ; }; 2}; ,3,4,5}; }

4}; ,2,3}; };

2}; ,3,4,5}; }

}; ,2,3,4}; };

,2}; 3,4,5}; }

4}; ,2}; };

2 }; 3,4,5}; }

4}; ,2}; };

2 ,3}; 4,5}; }

4 }; 2}; };

2 }; 4,5}; 3}

4}; 2}; };

2 ,3,4}; 5}; }

4 }; 2}; };

2 ,3}; }; }

4 ,2}; }; };

2 ,3}; }; }

4,3}; ,2}; };

2}; 3,4,5}; }

4,2}; }; };

2 ,3,4}; }; }

4}; }; };

2 ,3,4,5}; }; }

4,2}; }; };

2 ,3}; 5}; 4}

4,2}; }; };

2 ,3,5}; }; }

4 }; 2}; };

2 ,4}; }; }

4 }; 2}; };

2 ,5}; }; }

4 ,2}; }; };

2 ,4}; }; }

4 ,2}; }; };

2 ,5}; }; }

4,3,2}; }; };

2,4}; 3}; }

4,3 }; 2}; };

2}; }; 4}

4,3,2}; }; };

2}; 3}; 4}
4,3}; ,2}; };

2,4}; 3,5}; }

4,3 }; }; 2};

2,4}; }; }

4,3}; }; };

2,4,5}; 3}; }

4,3 ,2}; }; };

2}; }; }

4,3,2}; }; };

2,3}; }; 4}

4,3,2}; }; };

2,4,3}; }; }

4,3}; }; };

2,4,5,3}; }; }

……

Fig. 3. The enumeration tree of pivot-based maximal biplex enumeration algorithm (𝑘 = 1).

Implementation details. With Theorem 5.1, we can implement our pivot-based maximal 𝑘-

biplex enumeration algorithm which is outlined in Algorithm 5. In Algorithm 5, the sets (𝑅𝑈 , 𝑅𝑉),
(𝐶𝑈 ,𝐶𝑉), and (𝑋𝑈 , 𝑋𝑉) are the current 𝑘-biplex of 𝐺 , the candidate sets, and the exclusion sets,

respectively. The algorithm first makes use of Theorem 5.1 to generate the optimal skipping sets

(𝑃𝑈 , 𝑃𝑉) (lines 6-8). Then, each vertex contained in (𝐶𝑈 ,𝐶𝑉) but excluded in (𝑃𝑈 , 𝑃𝑉) is used to

expand (𝑅𝑈 , 𝑅𝑉) (lines 9-14) to continue sub-recursive calls. If both the candidate sets and the

exclusion sets are empty, the current 𝑘-biplex (𝑅𝑈 , 𝑅𝑉) is maximal in 𝐺 (lines 3-4).

Note that when a vertex is used to expand the current 𝑘-biplex, Algorithm 5 invokes Algorithm 6

to update the candidate and exclusion sets (lines 16-17 of Algorithm 5). Specifically, when a vertex

𝑢 ∈ 𝐶𝑈 is pushed into (𝑅𝑈 , 𝑅𝑉), every vertex in𝐶𝑉 should keep the invariance that it has at most 𝑘

non-neighbors in 𝑅𝑈 ∪ {𝑢} (lines 1-3 of Algorithm 6). If there is a subset 𝑆 in 𝑅𝑉 \𝑁𝑢 (𝐺) that has 𝑘
non-neighbors in 𝑅𝑈 ∪ {𝑢}, then every vertex in 𝐶𝑈 \ {𝑢} must be the common neighbors of 𝑆 , i.e.,

𝐶𝑈 \ {𝑢} ⊆ 𝑁 (𝑆) (lines 4-5 of Algorithm 6). The solution for updating the exclusion sets (𝑋𝑈 , 𝑋𝑉)
is similar, thus we omit the details. Below, we give an example to illustrate the idea of Algorithm 5.

Example 2. Reconsider the bipartite graph 𝐺 in Fig. 1 and assume that 𝑘 = 1. Algorithm 5 first
initializes the sets 𝑅𝑈 , 𝑅𝑉 , 𝑋𝑈 , and 𝑋𝑉 to empty, and the sets 𝐶𝑈 and 𝐶𝑉 to 𝑈 and 𝑉 , respectively.
Based on the biplex pivoting rule (Theorem 5.1), the vertex 𝑣2 ∈ 𝐶𝑉 is selected as the pivot vertex in the
first recursion, and it can be obtained that only vertex 𝑣2 is used to expand the current 𝑘-biplex (∅, ∅).
Then, in the recursion with the current 𝑘-biplex (∅, {𝑣2}), a new pivot vertex 𝑢4 ∈ 𝐶𝑈 can be selected,
and the vertices ({𝑢4}, {𝑣1}) can be obtained to expand (∅, {𝑣2}). If 𝑢4 is pushed into (∅, {𝑣2}), the
similar pivoting rule will be used to enumerate all maximal 𝑘-biplex containing ({𝑢4}, {𝑣2}). After
that, the vertex 𝑣1 is pushed into (∅, {𝑣2}) to continue the recursions. Finally, the algorithm terminates
if no vertex is left to expand the current 𝑘-biplex in each recursion. The complete enumeration tree of
Algorithm 5 is illustrated in Fig. 3.

The following theorem shows that such an updating algorithm takes 𝑂 (𝑘𝑛) time.

Theorem 5.2. The time complexity of Algorithm 6 is 𝑂 (𝑘𝑛).
By Theorem 3.4, we can derive that the space complexity of Algorithm 5 is bounded by𝑂 (△𝑝𝑙𝑒𝑥𝑛+

𝑚), where △𝑝𝑙𝑒𝑥 is the maximum size of the biclique in 𝐺 . By Theorem 5.1 and Theorem 3.3, we

can also conclude that Algorithm 5 correctly enumerates all maximal 𝑘-biplex of 𝐺 .

The worst-case time complexity of Algorithm 5 is 𝑂 (𝑛22𝑛), as there are at most 2
𝑛
enumeration

branches. Nevertheless, it works well for real-world bipartite graphs (as evidenced in our experi-

ments) due to the proposed powerful pivot-based pruning technique. Moreover, similar to maximal

biclique enumeration, we can also use the ordering techniques, such as the degeneracy ordering

[15, 25] and the 2-hop degree ordering [9]), to further improve the efficiency of Algorithm 5.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:16 Qiangqiang Dai et al.

Algorithm 7: Size-constraint maximal 𝑘-biplex algorithm

Input: The bipartite graph𝐺 and two parameters 𝑘 and 𝑞

Output: All size constraint maximal 𝑘-biplexes of𝐺

1 𝐻 ← reduce the graph𝐺 by the (𝑞 − 𝑘,𝑞 − 𝑘)-core;
2 O ← ordering all vertices in𝑈𝐻 ∪𝑉𝐻 ;

3 foreach 𝑢𝑖 ∈ O, s.t. 𝑢𝑖 ∈ 𝑈 do
4 𝐶𝑈 ← O>𝑢𝑖 ∩ 𝑁 2

𝑢𝑖
(𝐻) ;𝐶𝑉 ← ∪𝑢∈𝐶𝑈 ∪{𝑢𝑖 }𝑁𝑢 (𝐻) ; 𝑋𝑈 ← O<𝑢𝑖 ∩ 𝑁 2

𝑢𝑖
(𝐻) ; 𝑋𝑉 ← ∅;

5 Reduce (𝐶𝑈 ,𝐶𝑉) and (𝑋𝑈 , 𝑋𝑉) by Lemma 9;

6 𝐵𝑖𝑝𝑙𝑒𝑥𝐸𝑛𝑢𝑚 ({𝑢𝑖 }, ∅,𝐶𝑈 ,𝐶𝑉 , 𝑋𝑈 , 𝑋𝑉) ;

Remark.We note that it seems difficult to derive a tighter time complexity for Algorithm 5. This is

because the size of the skipping set 𝑃𝑈 is very hard to bound; and the size of candidate sets cannot

be reduced if 𝑢 is used to expand the current partial 𝑘-biplex, because all non-neighbors of 𝑢 can

still be included in the candidate sets. We leave the problem of deriving a tighter time complexity

for Algorithm 5 as an interesting open question.

Discussion.We note that an existing solution used to find the maximum 𝑘-biplex [47] can also

be adapted to enumerate all maximal 𝑘-biplexes based on the so-called symmetric-BK branching

technique [47]. Specifically, this technique first selects a pivot vertex 𝑢 from 𝑅𝑈 ∪ 𝐶𝑈 (or from

𝑅𝑉 ∪𝐶𝑉). If 𝑑𝑢 (𝑅𝑈 ∪𝐶𝑈) > 𝑘 , then it generates at most 𝑘 + 2 subbranches to enumerate all maximal

𝑘-biplexes. Here each subbranch 𝐵𝑖 is ⟨𝑅𝑖 = 𝑅𝑈 ∪𝑅𝑉 ∪ {𝑢1, ..., 𝑢𝑖−1},𝐶𝑖 = 𝐶𝑈 ∪𝐶𝑉 \ {𝑢1, ..., 𝑢𝑖 }, 𝑋𝑖 =

𝑋𝑈 ∪ 𝑋𝑉 \ {𝑢𝑖 }⟩, where 𝑢1 = 𝑢 and 𝑢𝑖 ∈ 𝑁𝑢 (𝐶𝑉) (𝑖 > 1). With the restriction on the number of

subbranches for each recursive call, we can use a similar proof given in [47] to show that the

recurrence inequation 𝑇 (𝑛) ≤ ∑𝑘+2
𝑖=1 𝑇 (𝑛 − 𝑖) holds for such an adapted algorithm, where 𝑇 (𝑛)

denotes the number of recursive calls of the algorithm. Then, based on the theoretical result in [16],

we can derive that the worst-case time complexity of this adapted algorithm depends on 𝑂 (𝛾𝑛
𝑘
),

where 𝛾𝑘 = 1.839, 1.928, and 1.966, for 𝑘 = 1, 2, and 3 respectively. Note that the time complexity

of this adaption is worse than that of the original algorithm proposed in [47] for detecting the

maximum 𝑘-biplex. The reason is that the number of maximal 𝑘-biplexes on a bipartite graph can

be extremely large and the problem of finding one maximum 𝑘-biplex is often much easier than the

problem of enumerating all maximal 𝑘-biplexes. Moreover, we find that such an adapted algorithm

is not very efficient for enumerating all maximal 𝑘-biplexes, as it involves many unnecessary

computations. Specifically, in this algorithm, 𝐵1 can generate all maximal 𝑘-biplexes that have been

detected by each 𝐵𝑖 (𝑖 > 1) based on the result that 𝑅1 ⊂ 𝑅𝑖 and 𝐶𝑖 ⊂ 𝐶1 for each 𝑖 > 1, thus many

redundant results will be explored by this algorithm. Indeed, as shown in our experiments (see

Sec. 6.3), the performance of such an adapted algorithm is significantly worse than our pivot-based

solutions, although its worst-case time complexity is lower than ours.

5.2 Enumerating Large Maximal 𝑘-Biplexes
In this subsection section, we focus on the problem of enumerating large maximal 𝑘-biplexes as

small maximal 𝑘-biplexes are often no practical use in real-world applications. More importantly,

we prove that large maximal 𝑘-biplexes have small diameters, thus they are often more cohesive

compared to the small maximal 𝑘-biplexes.

Lemma 7. For any maximal 𝑘-biplex (𝐴, 𝐵) of 𝐺 , the diameter of 𝐺 (𝐴, 𝐵) is no larger than 3 if
|𝐴| ≥ 2𝑘 + 1 and |𝐵 | ≥ 2𝑘 + 1.

According to Lemma 7, we can see that every maximal 𝑘-biplex (𝐴, 𝐵) of𝐺 with |𝐴| ≥ 2𝑘 + 1 and
|𝐵 | ≥ 2𝑘 + 1,𝐺 (𝐴, 𝐵) must be densely connected since its diameter is no larger than 3. Note that the

constraints of |𝐴| ≥ 2𝑘 + 1 and |𝐵 | ≥ 2𝑘 + 1 are relatively mild, since 𝑘 is often not very large (e.g.,

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:17

𝑘 ≤ 5). In the following, we focus mainly on the problem of enumerating all maximal 𝑘-biplexes of

𝐺 whose size on each side is no less than 𝑞 ≥ 2𝑘 + 1, i.e., output each maximal 𝑘-biplex (𝐴, 𝐵) of 𝐺
with |𝐴| ≥ 𝑞, |𝐵 | ≥ 𝑞, and 𝑞 ≥ 2𝑘 + 1.
Pruning techniques. Similar to the size-constraint maximal biclique enumeration problem, we

can also make use of the (𝛼, 𝛽)-core to prune unpromising vertices for size-constraint maximal

𝑘-biplex enumeration.

For each 𝑘-biplex (𝐴, 𝐵) of 𝐺 with |𝐴| ≥ 𝑞 and |𝐵 | ≥ 𝑞, it is easy to see that the smallest degree

of vertices in 𝐺 (𝐴, 𝐵) is at least 𝑞 − 𝑘 , which means that every 𝑘-biplex must be contained in the

(𝑞 − 𝑘, 𝑞 − 𝑘)-core.

Lemma 8. Any maximal 𝑘-biplex (𝐴, 𝐵) of bipartite graph 𝐺 with |𝐴| ≥ 𝑞 and |𝐵 | ≥ 𝑞 must be
included in the (𝑞 − 𝑘, 𝑞 − 𝑘)-core of 𝐺 .

By Lemma 8, all vertices that are not contained in the (𝑞 − 𝑘, 𝑞 − 𝑘)-core can be safely pruned

from 𝐺 when enumerating maximal 𝑘-biplexes (𝐴, 𝐵) with |𝐴| ≥ 𝑞 and |𝐵 | ≥ 𝑞. In addition, we

also derive a more effective pruning rule to further reduce the unpromising vertices.

Lemma 9. Given any 𝑘-biplex (𝐴, 𝐵) of 𝐺 with |𝐴| ≥ 𝑞 and |𝐵 | ≥ 𝑞, for each pair of vertices
𝑢1 and 𝑢2 in 𝐴 and each pair of vertices 𝑣1 and 𝑣2 in 𝐵, we have |𝑁𝑢1

(𝐵) ∩ 𝑁𝑢2
(𝐵) | ≥ 𝑞 − 2𝑘 and

|𝑁𝑣1 (𝐴) ∩ 𝑁𝑣2 (𝐴) | ≥ 𝑞 − 2𝑘 .

When enumerating the size-constraint maximal 𝑘-biplexes that contain a specific vertex 𝑢 ∈ 𝑈 ,

we can further remove the vertices in the candidate sets and exclusion sets that conflict with 𝑢

according to the condition shown in Lemma 9.

Size-constraint maximal 𝑘-biplex enumeration. Algorithm 7 outlines the size-constraint

maximal 𝑘-biplex enumeration algorithm which is integrated with the pruning rules developed in

Lemma 8 and Lemma 9. Specifically, Algorithm 7 first applies the (𝛼, 𝛽)-core reduction technique

(Lemma 8) to remove the unnecessary vertices in 𝐺 (line 1). Then, the algorithm uses the ordering

technique (degeneracy ordering or 2-hop degree ordering) to enumerate all maximal 𝑘-biplexes

in the remaining graph (lines 2-6). With a specific ordered vertex set O, each vertex 𝑢𝑖 ∈ O with

𝑢𝑖 ∈ 𝑈 is selected to enumerate all size-constraint maximal 𝑘-biplexes containing 𝑢𝑖 . Note that

the corresponding candidate sets (𝐶𝑈 ,𝐶𝑉) and exclusion sets (𝑋𝑈 , 𝑋𝑉) are initialized with vertices

whose distance from 𝑢𝑖 is no larger than 3 by Lemma 7 (line 4). After that, the algorithm leverages

Lemma 9 to further reduce the size of (𝐶𝑈 ,𝐶𝑉) and (𝑋𝑈 , 𝑋𝑉) (line 5). Finally, the pivot-based

recursive procedure is invoked to enumerate all the maximal 𝑘-biplexes (line 6).

6 EXPERIMENTS
6.1 Experimental Setup

Different algorithms. We implement four algorithms to enumerate maximal bicliques: BCEA,
BCEAD,BCEAH, andBCDelay. HereBCEA is Algorithm 3;BCEAD andBCEAH denote Algorithm 3

with the degeneracy ordering and 2-hop degree ordering optimization respectively; and BCDelay
is Algorithm 4 with a polynomial-delay property. All BCEA, BCEAD, BCEAH, and BCDelay are

equipped with the early termination trick. To enumerate size-constraint maximal bicliques, all

pruning techniques developed in Section 4.4 are used for BCEA, BCEAD, and BCEAH. Note that
BCDelay cannot guarantee polynomial-delay for enumerating size-constraint maximal bicliques,

since it is difficult to determinewhether there is a biclique with size no less than𝑞 in a bipartite graph.

Thus, we exclude BCDelay when enumerating size-constraint maximal bicliques. We compare

our algorithms with the state-of-the-art maximal biclique enumeration algorithm developed in

[9], namely oMBEA. Note that there are several other maximal biclique enumeration algorithms

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:18 Qiangqiang Dai et al.

Table 1. Real-world graph datasets.

Datasets |𝑈 | |𝑉 | |𝐸 | 𝑑1max 𝑑2max

Crime 829 551 1,476 25 18

Ucforum 899 522 7,089 99 126

Fjwiki 612 1,922 12,382 360 48

Escorts 16,730 6,624 50,632 125 305

YouTube 94,238 30,087 293,360 1,035 7,591

BkCrossing 105,278 340,523 1,149,739 13,601 2,502

Cite 22,715 731,769 2,411,819 189,292 1,264

Dbtropes 64,415 87,678 3,232,134 6507 12400

IMDB 303,617 896,302 3,782,463 1,334 1,590

Twitter 175,214 530,418 4,664,605 968 19,805

DBLP 1,953,085 5,624,219 12,282,059 1,386 287

0.1

1

10

100

 2 4 6 8 10 12

T
im

e
 (

s
e
c
)

q

BCEA
BCEAD

BCEAH
oMBEA

(a) YouTube

10
1

10
2

10
3

10
4

 2 4 6 8 10 12

T
im

e
 (

s
e
c
)

q

BCEA
BCEAD

BCEAH
oMBEA

(b) BkCrossing

10
0.5

10
1.0

10
1.5

10
2.0

10
2.5

 2 4 6 8 10 12

T
im

e
 (

s
e
c
)

q

BCEA
BCEAD

BCEAH
oMBEA

(c) Cite

10
0

10
0.5

10
1.0

10
1.5

10
2.0

 2 4 6 8 10 12

T
im

e
 (

s
e
c
)

q

BCEA
BCEAD

BCEAH
oMBEA

(d) IMDB

10
4

10
4.5

10
5

INF

 2 4 6 8 10 12

T
im

e
 (

s
e
c
)

q

BCEA
BCEAD
BCEAH
oMBEA

(e) Dbtropes

Fig. 4. Runtime of various algorithms for enumerating large maximal bicliques on large bipartite graphs.

[1, 14, 50], but all of them are much worse than oMBEA [9]. Therefore, we only use oMBEA as the

baseline in our experiments.

We also implement four maximal𝑘-biplex enumeration algorithms, called BPEA,BPEAD,BPEAH,
and symBK, where BPEA is Algorithm 5, BCEAD and BCEAH denote Algorithm 5 with the degen-

eracy ordering and 2-hop degree ordering optimization respectively, symBK is an adaptation of

the algorithm proposed in [47] which is originally devised to detect the maximum 𝑘-biplex. To

enumerate size-constraint maximal 𝑘-biplexes, all pruning techniques proposed in Section 5.2 are

used for BPEA, BPEAD, BPEAH, and symBK. We compare our algorithms with two state-of-the-art

maximal 𝑘-biplex algorithms, called iTrav [48] and iMB [49]. All the algorithms, including our

algorithms and baselines, are implemented in C++, and tested on a PC with one 2.2 GHz CPU and

64GB memory running CentOS.

Datasets. In our experiments, we use 11 real-world bipartite graphs for performance evaluation. The

detailed statistics of datasets are summarized in Table 1, where the columns 𝑑1max and 𝑑2max are the

maximum degree of vertices in𝑈 and𝑉 , respectively. Note that the first 4 small real-world bipartite

graphs in Table 1 are used to evaluate the performance of different algorithms for enumerating all

maximal 𝑘-biplexes. Since the number of small-size maximal 𝑘-biplexes is often very large, most of

algorithms cannot handle large graphs when enumerating all maximal 𝑘-biplexes. The remaining

7 large real-world bipartite graphs in Table 1 are used to test the performance of algorithms for

enumerating all (and size-constraint) maximal bicliques and the size-constraint maximal 𝑘-biplexes.

All datasets are downloaded from (http://www.konect.cc/networks).

Parameters.When enumerating size-constraint maximal bicliques, the integer threshold parameter

𝑞 is selected from 2 to 12. In enumerating maximal 𝑘-biplexes, there are two parameters 𝑘 and 𝑞

(the size-constraint threshold). We choose 𝑘 from 1 to 4, with a default value of 1; and we select 𝑞

from 10 to 20 for all datasets except DBLP (for which 𝑞 is selected from 6 to 10, because DBLP does

not contain very large 𝑘-biplexes).

6.2 Efficiency of Maximal Biclique Enumeration

Exp-1: Results of enumerating all maximal cliques. Table 2 shows the runtime of oMBEA,
BCEA, BCEAD, BCEAH, and BCDelay for enumerating all maximal bicliques on different large

real-world bipartite graphs. From Table 2, we can see that the proposed pivot-based algorithm

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

http://www.konect.cc/networks

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:19

Table 2. Runtime of various algorithms for enumerating all maximal bicliques on large graphs (in seconds).

Datasets oMBEA BCEA BCEAD BCEAH BCDelay
YouTube 74.59 17.44 7.77 5.89 8.27

BkCrossing 4739.6 314.63 307.29 310.85 337.52

Cite 414.83 265.67 95.21 91.53 113.65

Dbtropes >20d 116710.13 88851.47 85111.11 80617.47
IMDB 111.04 51.15 58.59 54.81 59.57

Twitter 135.73 424.21 240.87 107.89 193.72

DBLP 26.73 15.83 13.52 14.7 11.74

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

se
c
)

Number of results

BCDelay
BCEAH
oMBEA

(a) YouTube

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 (

se
c
)

Number of results

BCDelay
BCEAH
oMBEA

(b) DBLP

Fig. 5. Delay testing for maximal biclique enumera-
tion algorithms.

10
0

10
1

10
2

10
3

10
4

INF

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

n

BCEA
BCEAD
BCEAH
oMBEA

(a) varying vertices

10
1

10
2

10
3

10
4

INF

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

m

BCEA
BCEAD
BCEAH
oMBEA

(b) varying edges

Fig. 6. Scalability for maximal biclique enumeration
algorithms.

BCEAH consistently outperforms the state-of-the-art algorithm oMBEA. On most datasets, our

algorithms can achieve one order of magnitude faster than oMBEA. For instance, our algorithms

take at most 337 seconds on BkCrossing, while oMBEA consumes 4739.6 seconds. The reasons

are two-fold. First, the proposed pivoting technique can dramatically prune unnecessary search

branches, because it only expands the current partial biclique with the pivot vertex and the non-

neighbor vertices on the opposite side. Second, the proposed pivoting technique is computationally

efficient (it simply selects the vertex with the largest degree as the pivot), which can be computed in

linear time. In contrast, the dominating technique used in oMBEA needs to compute the common

neighbors for each pair of vertices in the candidate set, which is much more expensive. As a result,

our pivot-based solutions can substantially outperform oMBEA. In addition, when comparing our

algorithms BCEA, BCEAD, BCEAH, and BCDelay, we notice that there is a relatively-small gap

in time spent on most datasets, which indicates that the proposed pivoting techniques play the

crucial role in reducing unnecessary computations.

Exp-2: Results of enumerating large maximal bicliques. Note that oMBEA was originally

designed to enumerate all maximal bicliques. For a fair comparison, all the pruning techniques

developed in Section 4.4 for enumerating size-constraint maximal bicliques are also integrated

in oMBEA. Fig. 4 shows the runtime of different algorithms on all large bipartite graphs with

varying 𝑞, where “INF” denotes that the algorithm cannot terminate within 24 hours. From Fig. 4,

we observe that the performance of BCEAD consistently outperforms that of oMBEA with varying

𝑞. Moreover, with the increase of the parameter 𝑞, the speedup rate of BCEAD compared to oMBEA
increases dramatically. The reason behind this may be that as 𝑞 increases, the pruning technique

(i.e., (𝛼, 𝛽)-core) can produce a denser induced subgraph. This would decrease the effectiveness of

the neighborhood domination based pruning techniques used in oMBEA. In addition, we can see

that BCEAD is slightly better than BCEAH; and BCEA still significantly outperforms oMBEA. The
results further demonstrate the high efficiency of the proposed pivoting techniques compared to

the state-of-the-art algorithm.

Exp-3: Delay testing for enumerating maximal bicliques. Fig. 5 shows the time delay of

algorithms BCDelay, BCEAH, and oMBEA on two representative datasets with varying the number

of returned maximal bicliques. The results for the other algorithms (BCEA and BCEAD) and
other datasets are consistent. As can be seen, the time delay for each algorithm is very short.

Moreover, similar to the previous results, our algorithms (BCDelay and BCEAH) significantly
outperform oMBEA when outputting a fixed number of results. For example, on YouTube, even

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:20 Qiangqiang Dai et al.

Table 3. Runtime of various algorithms for enumerating all maximal 𝑘-biplexes with 𝑘 = 1 (in seconds).

Datasets iTrav iMB symBK BPEA BPEAD BPEAH
Crime 167.784 47.60 12.72 4.09 4.13 3.90

Ucforum 16763.21 18899.93 3334.75 36.37 35.11 35.17

Fjwiki 71161.72 79687.91 3739.50 86.78 69.29 78.70

Escorts INF INF INF 19098.19 15816.21 16266.08

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

ec
)

Number of results

BPEA
BPEAD
BPEAH

iTrav
iMB

symBK

(a) Twitter (𝑘 = 1)

10
-2

10
0

10
2

10
4

 1 2 3 4

T
im

e
(s

ec
)

k

BPEA
BPEAD
BPEAH

iTrav
iMB

symBK

(b) Twitter (output 104 results)

10
-1

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

T
im

e
(s

ec
)

Number of results

BPEA
BPEAD
BPEAH

iTrav
iMB

symBK

(c) DBLP (𝑘 = 1)

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 1 2 3 4

T
im

e
(s

ec
)

k

BPEA
BPEAD
BPEAH

iTrav
iMB

symBK

(d) DBLP (output 10
4
results)

Fig. 7. Delay testing for biplex enumeration algorithms.

when outputting 10
6
results, the time costs of BCDelay, BCEAH, and oMBEA are 3.0, 2.22, and

35.4 seconds respectively. These results indicate that our algorithms are very efficient when the

applications only require to output a fixed number of results. In addition, we can also see that

BCDelay outperforms BCEAH if the number of returned results is not very large (e.g., ≤ 10
4
), but

it may be slightly worse than BCEAH when the number of returned results is large (Fig. 5(a)). The

reasons are twofold. First, BCDelay can output results in non-leaf nodes of the enumeration tree,

whereas BCEAH only outputs results in leaf nodes. Second, BCDelay consumes a litter more time

than BCEAH in each recursion, because BCDelay additionally needs to check the maximality of

(𝑅𝑈 , 𝑅𝑉 ∪𝐶𝑉) (or (𝑅𝑈 ∪𝐶𝑈 , 𝑅𝑉)) in each recursion.

Exp-4: Scalability testing. To evaluate the scalability of the proposed algorithms, we randomly

sample 20-80% vertices and edges from the dataset Dbtropes to produce 8 subgraphs with different

scales (similar results on the other datasets can also be observed). Fig. 6 shows the runtime of

BCEA, BCEAD, BCEAH, and oMBEA for listing all maximal bicliques on each sampled subgraph.

As can be seen, the runtime of our algorithms increases smoothly as the size of the graph increases;

and the state-of-the-art oMBEA always shows the worst performance with varying parameters.

Moreover, as the number of vertices or edges increases, the runtime of oMBEA also increases much

faster compared to our pivot-based algorithms BCEA, BCEAD, and BCEAH. This result suggests
that our algorithms exhibit good scalability in processing large bipartite graphs.

6.3 Efficiency of 𝑘-Biplex Enumerations

Exp-5: Results of enumerating all maximal 𝑘-biplexes. In this experiment, we test the perfor-

mance of various algorithms for enumerating all maximal 𝑘-biplexes. Table 3 shows the runtime

of BPEA, BPEAD, BPEAH, iTrav, iMB, and symBK on 4 small bipartite graphs (first 4 datasets

in Table 1) with 𝑘 = 1. Note that enumerating all maximal 𝑘-biplexes on large bipartite graphs

is very costly for all algorithms, so we only use large bipartite graphs (the remaining datasets

in Table 1) to evaluate the performance of different algorithms for enumerating size-constraint

maximal 𝑘-biplexes. As can be seen, the algorithms we developed, BPEA, BPEAD, and BPEAH, are
several orders of magnitude faster than the state-of-the-art algorithms iTrav, iMB, and symBK.
For example, on Ucforum, iTrav, iMB and symBK take 16763.21, 18899.93, and 3334.75 seconds to

enumerate all maximal 1-biplexes respectively, however, our algorithms consume at most 36.37

seconds. This result indicates that the proposed pivoting technique is very effective to prune

unnecessary branches in enumerating all maximal 𝑘-biplexes. Moreover, we observe that BPEAD
is usually faster than BPEAH. The reason may be that the 𝑘-biplex is no longer included in the

subgraph induced by the 2-hop neighbors of the vertices, thus reducing the pruning performance

of the 2-hop degree ordering.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:21

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

BPEA
BPEAD
BPEAH

iMB
symBK

(a) YouTube

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 10 12 14 16 18 20
T

im
e
 (

s
e
c
)

q

BPEA
BPEAD
BPEAH

iMB
symBK

(b) Cite

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

BPEA
BPEAD
BPEAH

iMB
symBK

(c) IMDB

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 10 12 14 16 18 20

T
im

e
 (

s
e
c
)

q

BPEA
BPEAD
BPEAH

iMB
symBK

(d) Twitter

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 5 6 7 8 9 10

T
im

e
 (

s
e
c
)

q

BPEA
BPEAD
BPEAH

iMB
symBK

(e) DBLP

Fig. 8. Runtime of various algorithms for enumerating large 𝑘-biplexes with varying 𝑞 (𝑘 = 1).

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 1 2 3 4

T
im

e
 (

se
c
)

k

BPEA
BPEAD
BPEAH

iMB
symBK

(a) Twitter (𝑞 = 20)

10
-2

10
-1

10
0

10
1

10
2

10
3

10
4

INF

 1 2 3 4

T
im

e
 (

se
c
)

k

BPEA
BPEAD
BPEAH

iMB
symBK

(b) DBLP (𝑞 = 10)

Fig. 9. Runtime of various algorithms with varying
𝑘 .

10
-3

10
-1

10
1

10
3

INF

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

n

BPEA
BPEAD
BPEAH

iMB
symBK

(a) varying vertices

10
-3

10
-1

10
1

10
3

INF

20% 40% 60% 80% 100%

T
im

e
 (

se
c
)

m

BPEA
BPEAD
BPEAH

iMB
symBK

(b) varying edges

Fig. 10. Scalability testing for maximal 𝑘-biplex enu-
meration (𝑘 = 1, 𝑞 = 8).

Exp-6: Delay testing. We also compare the delay times of different algorithms with iTrav, where
iTrav is a polynomial delay algorithm using a reverse search technique. Fig. 7 shows the runtime of

each algorithm on Twitter andDBLPwith varying 𝑘 and the number of returned maximal 𝑘-biplexes.

The results on other datasets are consistent. As can be seen, our pivot-based algorithms, BPEA,
BPEAD, and BPEAH shows better delay results compared to iTrav, iMB, and symBK, although
our algorithms do not guarantee a polynomial delay property in theory. This result indicates that

our pivot-based algorithms can achieve very good delay performance in practice. Moreover, the

runtime of iTrav usually increases dramatically as the number of returned 𝑘-biplexes increases or

the value of 𝑘 increases. For instance, on Twitter, if 𝑘 = 1, iTrav takes 0.642 seconds and 11.174

seconds to return 10
4
and 10

5
results, respectively. However, with the same parameter settings,

BPEAD only takes 0.029 and 0.051 seconds to finish the computation respectively, which further

confirms the efficiency of the proposed pivot-based algorithms.

Exp-7: Results of enumerating large maximal 𝑘-biplexes. In this experiment, we evaluate

the performance of various algorithms for enumerating size-constraint maximal 𝑘-biplexes on

real-world large graphs. Fig. 8 and Fig. 9 show the runtime of BPEA, BPEAD, BPEAH, iMB, and
symBK on real-world large graphs with varying 𝑞 and 𝑘 . Note that Fig. 9 only shows the results

on Twitter and DBLP, and similar results can also be observed on the other datasets. Moreover,

because of the reverse search technique, iTrav still needs to enumerate all maximal 𝑘-biplexes to

obtain size-constraint maximal 𝑘-biplexes, which is very costly for large graphs. Thus, we do not

present the runtime of iTrav in this experiment. As can be seen, our algorithms BPEA, BPEAD, and
BPEAH consistently outperform the baselines (iMB and symBK) on all datasets. More specifically,

under most parameter settings, BPEAD can be orders of magnitude faster than iMB and symBK.
For example, on Cite, when 𝑞 = 20, our algorithm BPEAD takes only 0.58 seconds, while symBK
and iMB consume 959.72 and 5,228 seconds, respectively. These results further demonstrate the

high efficiency of the proposed pivot-based enumeration algorithms.

Exp-8 Scalability testing. Here we evaluate the scalability of BPEA, BPEAD, and BPEAH. To
this end, we generate 8 subgraphs by randomly sampling 20-80% of vertices or edges on Twitter.
Then, we run our algorithms on these subgraphs. Fig. 10 shows the runtime of various algorithms

on each subgraph. As can be seen, the runtime of our algorithms increases smoothly as the scale

of the bipartite graph increases, and the baseline algorithms iMB and symBK are always worse

than our algorithms under all parameter settings. With the number of vertices or edges increasing,

the runtime of iMB and symBK also increases much faster compared to our BPEA, BPEAD, and

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:22 Qiangqiang Dai et al.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

YouTobe
BkCrossing

Cite Dbtropes
DBLP

R
at

io
 o

f
b

ra
n

ch
es

BCEA BCEAD BCEAH

(a) biclique enumerations

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

Crime Ucforum Fjwiki Escorts

R
at

io
 o

f
b

ra
n

ch
es

BPEA BPEAD BPEAH

(b) 1-biplex enumerations

0

2

4

6

8

INF

YouTobe
BkCrossing

Cite Dbtropes
DBLP

R
at

io
 o

f
o

p
er

at
io

n
s

BCEAH oMBEA

(c) biclique enumerations

1

10
1

10
2

10
3

INF

Crime Ucforum Fjwiki Escorts

R
at

io
 o

f
o

p
er

at
io

n
s

BPEAH
iMB

symBK
iTrav

(d) 1-biplex enumerations

Fig. 11. Pruning performance testing for pivoting techniques.

 0

 200

 400

 600

 800

 1000

 1200

 1400

Youtube
BkCrossing

Cite IMDB DBtropes

M
em

o
ry

 (
M

)

Graph Size
BCEAH
oMBEA

(a) biclique enumerations

10

100

1K

>10K

Cite IMDB Twitter
DBLP

M
em

o
ry

 (
M

)

Graph Size
BPEAH

iMB

symBK
iTrav

(b) 𝑘-biplex enumerations

Fig. 12. Memory usage for each algorithm

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 5 6 7

P
re

ci
si

o
n

ql (β)

biclique
1-biplex

(α, β)-core

FRAUDAR
DeepFD

(a) Precision

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 4 5 6 7

F
1
-S

co
re

ql (β)

biclique
1-biplex

(α, β)-core

FRAUDAR
DeepFD

(b) 𝐹1-Score

Fig. 13. Accuracy results for fraud detection.

BPEAH algorithms. This result indicates that our algorithms can achieve good scalability when

processing large bipartite graphs.

6.4 Further Performance Studies

Exp-9: Pruning performance testing. To study the pruning performance of our algorithms, we

evaluate the ratios of the number of branches for our algorithms to the number of maximal results

and the ratios of the number of atomic calculations for each baseline algorithm to the number of

atomic calculations of our algorithms. Here the number of atomic calculations of an algorithm

denotes the total number of arithmetic and logical operations involved in the algorithm. The results

on different datasets are shown in Fig. 11. Note that in Fig. 11(c-d) we only report the results

for BCEAD and BPEAD, since the results for our other algorithms are consistent. As shown in

Figs. 11(a-b), the number of branches in all our pivot-based algorithms is slightly larger than the

number of maximal results, even when using different ordering optimizations. This result suggests

that our pivoting technique is very powerful to prune unnecessary computations. From Figs. 11(c-d),

we can see that the number of atomic calculations in our algorithms can be one order of magnitude

less than the state-of-the-art maximal biclique enumeration algorithm oMBEA and up to three

orders of magnitude less than the state-of-the-art maximal 𝑘-biplex enumeration algorithms iMB,
iTrav and symBK, which further confirm the high efficiency of proposed pivot-based algorithms.

Exp-10: Memory usages. In this experiment, we evaluate the memory usage of maximal biclique

and maximal 𝑘-biplex enumeration algorithms on different datasets. The results are shown in

Fig. 12. Note that we only show the space overheads of BCEAH and BPEAH, since our algorithms

with different ordering techniques consume almost the same amount of space. As can be seen, the

space consumption of BCEAH and BPEAH is linearly w.r.t. the size of the bipartite graph. However,

some of existing algorithms may consume a large number of space. Specifically, oMBEA consumes

an order of magnitude more space than the input graph size. This is because oMBEA needs to store

the local subgraph for each recursive subproblem. iTrav also uses too much memory on all datasets,

since it needs to store all detected maximal biplexes in the main memory. These results indicate that

our algorithms are space-efficient, which also confirms the space complexity analysis in Secs. 3-5.

6.5 Case Studies

Exp-11: Fraud Detection. In this case study, we evaluate the effectiveness of the maximal biclique

and maximal 𝑘-biplex models for fraud detection [18]. Same as [18], we consider a camouflage attack

on “Amazon Fashion” (https://nijianmo.github.io/amazon/index.html), which contains 883,636

reviews on 186,637 products by 749,233 users, and also injected with 100 fake users, 100 fake

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

https://nijianmo.github.io/amazon/index.html

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:23

products, 2K fake reviews, and 2K camouflage reviews. Each fake review is randomly generated

between all pairs of fake users and fake products, and camouflage reviews are randomly linked

to real users (fake users) to fake products (real products), which coincides with a real camouflage

attack as shown in [18]. We use the maximal biclique and maximal 𝑘-biplex to detect fraud users

and products in this dataset. We compare our methods with three baselines. The first baseline is the

(𝛼, 𝛽)-core [7], which is also a cohesive subgraph model in bipartite graphs. The second baseline is

the widely-used graph-based fraud detection algorithm FRAUDAR [18]. The third baseline is the

state-of-the-art deep-learning based algorithm DeepFD [43]. The source code of FRAUDAR and

DeepFD is publicly available, and in this experiment we use the default parameter settings as used in

[18, 43]. Denote by 𝑞𝑙 and 𝑞𝑟 the size of the left side (product-side) and right side (user-side) vertices,

respectively. Fig. 13 shows the precision and 𝐹1-Score (
2∗𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑟𝑒𝑐𝑎𝑙𝑙
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙) results with varying 𝑞𝑙

and 𝛽 , where 𝛼 = 3 and 𝑞𝑟 = 3 for biclique and 𝑞𝑟 = 4 for 𝑘-biplex. We can see that when 𝑞𝑟 is

small (𝑞𝑟 ≤ 5), the accuracy results (both precision and 𝐹1-Score) detected by the maximal biclique

are comparable to FRAUDAR and DeepFD, while both the precision and 𝐹1-Score results decrease

rapidly as 𝑞𝑟 grows to 𝑞𝑟 > 5. This is because the structural constraint of the maximal biclique

model is too strong which results in no biclique available when 𝑞𝑟 is large. For 1-biplex, the accuracy

results are different. Specifically, when 𝑞𝑟 is small, the accuracy is low, but the accuracy results

increase dramatically with the increase of 𝑞𝑟 . This is because the 1-biplexes with small size are

very sparse, and thus many results detected by 𝑘-biplex are not desirable. In addition, we can see

that the accuracy of (𝛼, 𝛽)-core is always very low, which is not very well for fraud detection. The

accuracy of FRAUDAR and DeepFD is worse than that of maximal 𝑘-biplex model. In conclusion,

the two hereditary subgraph models we focus on in this paper work well for fraud detection.

Exp-12: Community detection. Here we further conduct a case study to investigate the effective-

ness of the maximal biclique and maximal 𝑘-biplex models for community detection. We use the

IMDB dataset (https://datasets.imdbws.com) in this case study. which collects primary information

of each film/TV production on IMDB website. We generate a bipartite graph by connecting each

movie with its principal casts/crews, and the selected movies must meet the requirements of being

released after 2000 and having an average rating of no less than 6.5. In this experiment, we first

present the communities of “Harry Potter” detected by different cohesive subgraph models, whose

results are shown in Fig. 14(a). As can be seen, the studied models can detect meaningful commu-

nities; and each detected community is highly relevant, but with slight differences. Specifically,

the community detected by maximal biclique misses a movie “Sorcerer’s Stone”. This is because

the dataset includes only a portion of principal casts for each movie, and the principal casts of

“Sorcerer’s Stone” in the original dataset do not include “Emma Watson”, causing the result to

be ignored. However, by maximal 𝑘-biplex model, such a missed result can be identified. This

result suggests that the maximal 𝑘-biplex model can be used as an enhancement of the maximal

biclique model in community detection. To further evaluate the quality of communities detected

by different cohesive subgraph models, we also test the average density of communities detected

by each cohesive subgraph model with varying 𝑞𝑙 and 𝛼 . Fig. 14(b) shows the results, where the

default values of 𝑞𝑙 and 𝛽 are 5. As expected, the density of the communities detected by biclique

and 𝑘-biplex models are very high. The (𝛼, 𝛽)-core model, however, has very low densities with

varying 𝛼 . These results further confirm that the maximal biclique and maximal 𝑘-biplex models

are indeed very effective for detecting densely-connected communities in bipartite graphs.

7 RELATEDWORKS
Cohesive subgraph mining on bipartite graphs. Finding cohesive subgraphs from a bipartite

graph has been recognized as an important problem in bipartite graph analysis. In addition to the

maximal biclique model [1, 9, 14, 24, 28, 50] and the maximal 𝑘-biplex model [40, 48, 49], many

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

https://datasets.imdbws.com

138:24 Qiangqiang Dai et al.

Emma

Watson

Daniel

Radcliffe

Rupert

Grint

David

Heyman

J.K.

Rowling

Steve

Kloves

Chamber

of Secrets

Prisoner of

Azkaban

Deathly

Hallows:

Part 2

Deathly

Hallows:

Part 1

Half-

Blood

Prince

Order of

the

Phoenix

Goblet

of Fire

Sorcerer'

s Stone

Creating the

World

Biclique 1-biplex 2-biplex

(a) Communities by searching “Harry Potter”

 0

 0.2

 0.4

 0.6

 0.8

 1

 5 6 7 8 9

D
e
n

si
ty

qr (α)

biclique
1-biplex
2-biplex

(α, β)-core

(b) Average density of communities

Fig. 14. Results for community detection.

other interesting cohesive subgraph models have also been investigated, such as (𝛼, 𝛽)-core [7, 27],
𝑘-bitruss [45, 52], and quasi biclique [19, 30, 46]. Specifically, (𝛼, 𝛽)-core [7] is a subgraph in which

the minimum degree of vertices on each side is limited by a certain threshold Liu et al. [27] presented

an index-based algorithm for querying the (𝛼, 𝛽)-core communities in optimal time. In [52], the

authors proposed a 𝑘-bitruss model in bipartite graphs such that each edge is contained in at least

𝑘 butterflies (i.e., 2×2 bicliques); and efficient online index algorithms, as well as peeling algorithms

for computing 𝑘-bitruss, were developed in [45]. Quasi biclique is a relaxed biclique model which

requires the edge density of the subgraph 𝐻 = (𝐻𝑈 , 𝐻𝑉 , 𝐻𝐸) no less than a threshold 𝛾 ∈ [0, 1) [19]
or the minimum degree no less than 𝛾 · |𝐻𝑈 | (𝛾 · |𝐻𝑉 |) [30]. All these cohesive subgraph models

do not satisfy the hereditary property, thus their solutions cannot be directly used for solving our

problem.

Cohesive subgraph enumerations on traditional graphs. There are a large number of studies

that focus on the cohesive subgraph enumeration problem on traditional graphs (non-bipartite

graphs). Notable examples include maximal clique enumeration [5, 8, 11, 15, 33, 41], maximal 𝑘-plex

enumeration [4, 12, 26, 51], 𝑠-clique enumeration [3, 31], and 𝛾-quasi clique enumeration [29, 35].

All existing enumeration algorithms can be roughly classified into two categories. The first category

is the output-sensitive algorithms, in which the total time complexity of the algorithm is polynomial

with respect to (w.r.t.) the size of the outputs [3, 4, 8, 10, 11]. However, the practical performance of

these output-sensitive solutions is often very poor; and they typically cannot be used to handle large

real-world graphs. Another category of algorithms, which do not necessary to be output-sensitive,

have exponential time complexity w.r.t. the number of vertices in the worst-case, but they are often

very efficient when handling real-world sparse graphs due to some carefully-designed pruning

techniques [12, 15, 15, 33, 41, 51]. All these existing algorithms are mainly tailored to non-bipartite

graphs. It is quite non-trivial to extend these techniques to handle bipartite graphs, as the structures

of cohesive subgraphs on bipartite graphs are very different from that on non-bipartite graphs.

8 CONCLUSION
In this paper, we investigate the problem of enumerating all maximal subgraphs on bipartite graphs

that satisfy the hereditary property. To solve this problem, we develop a general enumeration

framework which utilizes a novel and carefully-designed pivoting principle. Based on this general

framework, we then propose new pivoting techniques to enumerate all maximal bicliques and

maximal 𝑘-biplexes in bipartite graphs. We show that the time complexity of our maximal biclique

enumeration algorithm is near optimal. For practical applications, some optimization techniques

are further developed to enumerate size-constraint maximal bicliques and maximal 𝑘-biplexes.

Finally, we conduct extensive experiments to evaluate the proposed algorithms; and the results

demonstrate the efficiency, scalability, and effectiveness of the proposed solutions.

ACKNOWLEDGMENTS
This work was partially supported by (i) National Key Research and Development Program of

China 2020AAA0108503, (ii) NSFC Grants U2241211, 62072034, U1809206 and (iii) CCF-Huawei

Populus Grove Fund. Rong-Hua Li is the corresponding author of this paper.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

Hereditary Cohesive Subgraphs Enumeration on Bipartite Graphs: The Power of Pivot-based Approaches 138:25

REFERENCES
[1] Aman Abidi, Rui Zhou, Lu Chen, and Chengfei Liu. 2020. Pivot-based Maximal Biclique Enumeration. In IJCAI.

3558–3564.

[2] Vladimir Batagelj and Matjaz Zaversnik. 2003. An O(m) Algorithm for Cores Decomposition of Networks. CoRR
cs.DS/0310049 (2003).

[3] Rachel Behar and Sara Cohen. 2018. Finding All Maximal Connected s-Cliques in Social Networks. In EDBT. 61–72.
[4] Devora Berlowitz, Sara Cohen, and Benny Kimelfeld. 2015. Efficient Enumeration of Maximal k-Plexes. In SIGMOD.

431–444.

[5] Coenraad Bron and Joep Kerbosch. 1973. Finding All Cliques of an Undirected Graph (Algorithm 457). Commun. ACM
16, 9 (1973), 575–576.

[6] Dongbo Bu, Yi Zhao, Lun Cai, Hong Xue, Xiaopeng Zhu, Hongchao Lu, Jingfen Zhang, Shiwei Sun, Lunjiang Ling,

Nan Zhang, Guojie Li, and Runsheng Chen. 2003. Topological structure analysis of the protein–protein interaction

network in budding yeast. Nucleic Acids Research 31, 9 (05 2003), 2443–2450.

[7] Monika Cerinsek and Vladimir Batagelj. 2015. Generalized two-mode cores. Soc. Networks 42 (2015), 80–87.
[8] Lijun Chang, Jeffrey Xu Yu, and Lu Qin. 2013. Fast Maximal Cliques Enumeration in Sparse Graphs. Algorithmica 66, 1

(2013), 173–186.

[9] Lu Chen, Chengfei Liu, Rui Zhou, Jiajie Xu, and Jianxin Li. 2022. Efficient Maximal Biclique Enumeration for Large

Sparse Bipartite Graphs. Proc. VLDB Endow. 15, 8 (2022), 1559–1571.
[10] Sara Cohen, Benny Kimelfeld, and Yehoshua Sagiv. 2008. Generating all maximal induced subgraphs for hereditary

and connected-hereditary graph properties. J. Comput. Syst. Sci. 74, 7 (2008), 1147–1159.
[11] Alessio Conte, Roberto Grossi, Andrea Marino, and Luca Versari. 2016. Sublinear-Space Bounded-Delay Enumeration

for Massive Network Analytics: Maximal Cliques. In ICALP, Vol. 55. 148:1–148:15.
[12] Alessio Conte, Tiziano De Matteis, Daniele De Sensi, Roberto Grossi, Andrea Marino, and Luca Versari. 2018. D2K:

Scalable Community Detection in Massive Networks via Small-Diameter k-Plexes. In KDD. 1272–1281.
[13] Peter Damaschke. 2014. Enumerating maximal bicliques in bipartite graphs with favorable degree sequences. Inf.

Process. Lett. 114, 6 (2014), 317–321.
[14] Apurba Das and Srikanta Tirthapura. 2019. Shared-Memory Parallel Maximal Biclique Enumeration. In HiPC. 34–43.
[15] David Eppstein, Maarten Löffler, and Darren Strash. 2010. Listing All Maximal Cliques in Sparse Graphs in Near-Optimal

Time. In ISAAC, Vol. 6506. 403–414.
[16] Fedor V. Fomin and Dieter Kratsch. 2010. Exact Exponential Algorithms. Springer.
[17] Stephan Günnemann, Emmanuel Müller, Sebastian Raubach, and Thomas Seidl. 2011. Flexible Fault Tolerant Subspace

Clustering for Data with Missing Values. In ICDM. 231–240.

[18] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos Faloutsos. 2016. FRAUDAR: Bounding

Graph Fraud in the Face of Camouflage. In KDD. 895–904.
[19] Dmitry I. Ignatov. 2019. Preliminary Results on Mixed Integer Programming for Searching Maximum Quasi-Bicliques

and Large Dense Biclusters. In ICFCA, Vol. 2378. 28–32.
[20] Sune Lehmann, Martin Schwartz, and Lars Kai Hansen. 2008. Biclique communities. Phys. Rev. E 78 (2008), 016108.

Issue 1.

[21] John M. Lewis and Mihalis Yannakakis. 1980. The Node-Deletion Problem for Hereditary Properties is NP-Complete.

J. Comput. Syst. Sci. 20, 2 (1980), 219–230.
[22] Michael Ley. 2002. The DBLP Computer Science Bibliography: Evolution, Research Issues, Perspectives. In SPIRE,

Vol. 2476. 1–10.

[23] Haiquan Li, Jinyan Li, and Limsoon Wong. 2006. Discovering motif pairs at interaction sites from protein sequences

on a proteome-wide scale. Bioinform. 22, 8 (2006), 989–996.
[24] Jinyan Li, Guimei Liu, Haiquan Li, and Limsoon Wong. 2007. Maximal Biclique Subgraphs and Closed Pattern Pairs of

the Adjacency Matrix: A One-to-One Correspondence and Mining Algorithms. IEEE Trans. Knowl. Data Eng. 19, 12
(2007), 1625–1637.

[25] Rong-Hua Li, Qiushuo Song, Xiaokui Xiao, Lu Qin, Guoren Wang, Jeffrey Xu Yu, and Rui Mao. 2022. I/O-Efficient

Algorithms for Degeneracy Computation on Massive Networks. IEEE Trans. Knowl. Data Eng. 34, 7 (2022), 3335–3348.
[26] Don R. Lick and Arthur T. White. 1970. k-Degenerate graphs. Canadian Journal of Mathematics 22, 5 (1970), 1082–1096.
[27] Boge Liu, Long Yuan, Xuemin Lin, Lu Qin, Wenjie Zhang, and Jingren Zhou. 2020. Efficient (𝛼 , 𝛽)-core computation in

bipartite graphs. VLDB J. 29, 5 (2020), 1075–1099.
[28] Guimei Liu, Kelvin Sim, and Jinyan Li. 2006. Efficient Mining of Large Maximal Bicliques. In DaWaK, Vol. 4081.

437–448.

[29] Guimei Liu and Limsoon Wong. 2008. Effective Pruning Techniques for Mining Quasi-Cliques. In ECML/PKDD,
Vol. 5212. 33–49.

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

138:26 Qiangqiang Dai et al.

[30] Xiaowen Liu, Jinyan Li, and Lusheng Wang. 2008. Quasi-bicliques: Complexity and Binding Pairs. In COCOON 2008,
Vol. 5092. 255–264.

[31] John W. Moon and Leo Moser. 1965. On cliques in graphs. Israel journal of Mathematics 3, 1 (1965), 23–28.
[32] Azam Sheikh Muhammad, Peter Damaschke, and Olof Mogren. 2016. Summarizing Online User Reviews Using

Bicliques. In SOFSEM, Vol. 9587. 569–579.

[33] Kevin A. Naudé. 2016. Refined pivot selection for maximal clique enumeration in graphs. Theor. Comput. Sci. 613
(2016), 28–37.

[34] René Peeters. 2003. The maximum edge biclique problem is NP-complete. Discret. Appl. Math. 131, 3 (2003), 651–654.
[35] Jian Pei, Daxin Jiang, and Aidong Zhang. 2005. On mining cross-graph quasi-cliques. In KDD. 228–238.
[36] Ardian Kristanto Poernomo and Vivekanand Gopalkrishnan. 2009. Towards efficient mining of proportional fault-

tolerant frequent itemsets. In KDD. 697–706.
[37] Erich Prisner. 2000. Bicliques in Graphs I: Bounds on Their Number. Comb. 20, 1 (2000), 109–117.
[38] Ron Rymon. 1992. Search through Systematic Set Enumeration. In Proceedings of the 3rd International Conference on

Principles of Knowledge Representation and Reasoning. 539–550.
[39] Eran Shaham, Honghai Yu, and Xiaoli Li. 2016. On finding the maximum edge biclique in a bipartite graph: a subspace

clustering approach. In SIAM. 315–323.

[40] Kelvin Sim, Jinyan Li, Vivekanand Gopalkrishnan, and Guimei Liu. 2009. Mining maximal quasi-bicliques: Novel

algorithm and applications in the stock market and protein networks. Stat. Anal. Data Min. 2, 4 (2009), 255–273.
[41] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time complexity for generating all maximal

cliques and computational experiments. Theor. Comput. Sci. 363, 1 (2006), 28–42.
[42] Oliver Voggenreiter, Stefan Bleuler, and Wilhelm Gruissem. 2012. Exact biclustering algorithm for the analysis of large

gene expression data sets. BMC Bioinform. 13, S-18 (2012), A10.
[43] Haibo Wang, Chuan Zhou, Jia Wu, Weizhen Dang, Xingquan Zhu, and Jilong Wang. 2018. Deep Structure Learning for

Fraud Detection. In ICDM. 567–576.

[44] Jun Wang, Arjen P. de Vries, and Marcel J. T. Reinders. 2006. Unifying user-based and item-based collaborative filtering

approaches by similarity fusion. In SIGIR. 501–508.
[45] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient Bitruss Decomposition for Large-scale

Bipartite Graphs. In ICDE. 661–672.
[46] Lusheng Wang. 2010. Near Optimal Solutions for Maximum Quasi-bicliques. In COCOON, Vol. 6196. 409–418.
[47] Kaiqiang Yu and Cheng Long. 2022. Maximum k-Biplex Search on Bipartite Graphs: A Symmetric-BK Branching

Approach. CoRR abs/2208.13207 (2022).

[48] Kaiqiang Yu, Cheng Long, Shengxin Liu, and Da Yan. 2022. Efficient Algorithms for Maximal k-Biplex Enumeration. In

SIGMOD. 860–873.
[49] Kaiqiang Yu, Cheng Long, Deepak P, and Tanmoy Chakraborty. 2021. On Efficient Large Maximal Biplex Discovery.

IEEE Trans. Knowl. Data Eng. (2021).
[50] Yun Zhang, Charles A. Phillips, Gary L. Rogers, Erich J. Baker, Elissa J. Chesler, and Michael A. Langston. 2014. On

finding bicliques in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data

types. BMC Bioinform. 15 (2014), 110.
[51] Yi Zhou, Jingwei Xu, Zhenyu Guo, Mingyu Xiao, and Yan Jin. 2020. Enumerating Maximal k-Plexes with Worst-Case

Time Guarantee. In AAAI. 2442–2449.
[52] Zhaonian Zou. 2016. Bitruss Decomposition of Bipartite Graphs. In DASFAA, Vol. 9643. 218–233.

Received October 2022; revised January 2023; accepted February 2023

Proc. ACM Manag. Data, Vol. 1, No. 2, Article 138. Publication date: June 2023.

	Abstract
	1 Introduction
	2 Problem Statement
	3 A General Pivot-based Framework
	3.1 The Basic Set Enumeration Framework
	3.2 Novel Pivot-based Enumeration Framework

	4 Maximal Biclique Enumeration
	4.1 Overview of Existing Algorithms
	4.2 Pivot-based Maximal Biclique Enumeration
	4.3 Optimization Techniques
	4.4 Enumerating Large Maximal Bicliques

	5 Maximal k-Biplex Enumeration
	5.1 Pivot-based Maximal k-Biplex Enumeration
	5.2 Enumerating Large Maximal k-Biplexes

	6 Experiments
	6.1 Experimental Setup
	6.2 Efficiency of Maximal Biclique Enumeration
	6.3 Efficiency of k-Biplex Enumerations
	6.4 Further Performance Studies
	6.5 Case Studies

	7 Related Works
	8 Conclusion
	Acknowledgments
	References

